1,079 research outputs found

    Analytical approximation for single-impurity Anderson model

    Get PDF
    We have applied the recently developed dual fermion technique to the spectral properties of single-band Anderson impurity problem (SIAM). In our approach a series expansion is constructed in vertices of the corresponding atomic Hamiltonian problem. This expansion contains a small parameter in two limiting cases: in the weak coupling case (U/t→0U/t \to 0), due to the smallness of the irreducible vertices, and near the atomic limit (U/t→∞U/t \to \infty), when bare propagators are small. Reasonable results are obtained also for the most interesting case of strong correlations (U≈tU \approx t). The atomic problem of the Anderson impurity model has a degenerate ground state, so the application of the perturbation theory is not straightforward. We construct a special approach dealing with symmetry-broken ground state of the renormalized atomic problem. Formulae for the first-order dual diagram correction are obtained analytically in the real-time domain. Most of the Kondo-physics is reproduced: logarithmic contributions to the self energy arise, Kondo-like peak at the Fermi level appears, and the Friedel sum rule is fulfilled. Our approach describes also renormalization of atomic resonances due to hybridization with a conduction band. A generalization of the proposed scheme to a multi-orbital case can be important for the realistic description of correlated solids.Comment: 6 pages, 5 figure

    Cracking the Quantum Advantage threshold for Gaussian Boson Sampling

    Full text link
    Scientists in quantum technology aspire to quantum advantage: a computational result unattainable with classical computers. Gaussian boson sampling experiment has been already claimed to achieve this goal. In this setup squeezed light states interfere in a mid-sized linear optical network. The exact simulation of the counting statistics of nn detectors is far beyond the possibilities of modern supercomputers once nn exceeds 5050. We challenge quantum advantage for a mid-sized Gaussian boson sampling setup and propose the approximate algorithm to obtain the probability of any specific measurement outcome. For an idealized 70-mode device, our approximation achieves accuracy competitive with the experimental one.Comment: The supplementary material is uploaded as a separate fil

    Electron energy spectrum of the spin-liquid state in a frustrated Hubbard model

    Get PDF
    Non-local correlation effects in the half-filled Hubbard model on an isotropic triangular lattice are studied within a spin polarized extension of the dual fermion approach. A competition between the antiferromagnetic non-collinear and the spin liquid states is strongly enhanced by an incorporation of a k-dependent self-energy beyond the local dynamical mean-field theory. The dual fermion correc- tions drastically decrease the energy of a spin liquid state while leaving the non-collinear magnetic states almost non-affected. This makes the spin liquid to become a preferable state in a certain interval of interaction strength of an order of the magnitude of a bandwidth. The spectral function of the spin-liquid Mott insulator is determined by a formation of local singlets which results in the energy gap of about twice larger than that of the 120 degrees antiferromagnetic Neel state.Comment: 6 pages, 4 figure

    Superperturbation solver for quantum impurity models

    Get PDF
    We present a very efficient solver for the general Anderson impurity problem. It is based on the perturbation around a solution obtained from exact diagonalization using a small number of bath sites. We formulate a perturbation theory which is valid for both weak and strong coupling and interpolates between these limits. Good agreement with numerically exact quantum Monte-Carlo results is found for a single bath site over a wide range of parameters. In particular, the Kondo resonance in the intermediate coupling regime is well reproduced for a single bath site and the lowest order correction. The method is particularly suited for low temperatures and alleviates analytical continuation of imaginary time data due to the absence of statistical noise compared to quantum Monte-Carlo impurity solvers.Comment: 6 pages, 5 figure
    • …
    corecore