1,187 research outputs found

    Different kinds of long-term variability from Cygnus X-1

    Full text link
    We present a study of the long-term variability of Cyg X-1 using data from the RXTE/ASM and the RXTE/PCA during the time between the two soft states of 1996 and 2001/2002. This period has been characterized by many short ASM flaring episodes which we have identified as "failed state transitions". The 150 d period which has been seen before and shortly after the 1996 soft state is not obviously present in the ASM rate during most of this time. Applying selection criteria from our pointed RXTE/PCA observations to exclude the flaring episodes we show that the 150 d period can indeed still be significantly detected in the hard state. Furthermore, while the ~420 d timescale associated with the flaring is reduced in the selected hard state count rate, it is still pronounced in the temporal evolution of the corresponding hardness ratios. The Ryle radio flux is also consistent with the 150 d period being present but distorted during this time.Comment: 4 pages, 6 figures, to appear in Proceedings of "X-ray Timing 2003: Rossi and Beyond", ed. P. Kaaret, F.K. Lamb, & J.H. Swan

    New Constraints on Quantum Gravity from X-ray and Gamma-Ray Observations

    Get PDF
    One aspect of the quantum nature of spacetime is its "foaminess" at very small scales. Many models for spacetime foam are defined by the accumulation power α\alpha, which parameterizes the rate at which Planck-scale spatial uncertainties (and thephase shifts they produce) may accumulate over large path-lengths. Here α\alpha is defined by theexpression for the path-length fluctuations, δℓ\delta \ell, of a source at distance ℓ\ell, wherein δℓ≃ℓ1−αℓPα\delta \ell \simeq \ell^{1 - \alpha} \ell_P^{\alpha}, with ℓP\ell_P being the Planck length. We reassess previous proposals to use astronomical observations ofdistant quasars and AGN to test models of spacetime foam. We show explicitly how wavefront distortions on small scales cause the image intensity to decay to the point where distant objects become undetectable when the path-length fluctuations become comparable to the wavelength of the radiation. We use X-ray observations from {\em Chandra} to set the constraint α≳0.58\alpha \gtrsim 0.58, which rules out the random walk model (with α=1/2\alpha = 1/2). Much firmer constraints canbe set utilizing detections of quasars at GeV energies with {\em Fermi}, and at TeV energies with ground-based Cherenkovtelescopes: α≳0.67\alpha \gtrsim 0.67 and α≳0.72\alpha \gtrsim 0.72, respectively. These limits on α\alpha seem to rule out α=2/3\alpha = 2/3, the model of some physical interest.Comment: 11 pages, 9 figures, ApJ, in pres
    • …
    corecore