272 research outputs found

    Breakdown of the adiabatic limit in low dimensional gapless systems

    Full text link
    It is generally believed that a generic system can be reversibly transformed from one state into another by sufficiently slow change of parameters. A standard argument favoring this assertion is based on a possibility to expand the energy or the entropy of the system into the Taylor series in the ramp speed. Here we show that this argumentation is only valid in high enough dimensions and can break down in low-dimensional gapless systems. We identify three generic regimes of a system response to a slow ramp: (A) mean-field, (B) non-analytic, and (C) non-adiabatic. In the last regime the limits of the ramp speed going to zero and the system size going to infinity do not commute and the adiabatic process does not exist in the thermodynamic limit. We support our results by numerical simulations. Our findings can be relevant to condensed-matter, atomic physics, quantum computing, quantum optics, cosmology and others.Comment: 11 pages, 5 figures, to appear in Nature Physics (originally submitted version

    Dynamical Quantum Phase Transitions in the Transverse Field Ising Model

    Get PDF
    A phase transition indicates a sudden change in the properties of a large system. For temperature-driven phase transitions this is related to non-analytic behavior of the free energy density at the critical temperature: The knowledge of the free energy density in one phase is insufficient to predict the properties of the other phase. In this paper we show that a close analogue of this behavior can occur in the real time evolution of quantum systems, namely non-analytic behavior at a critical time. We denote such behavior a dynamical phase transition and explore its properties in the transverse field Ising model. Specifically, we show that the equilibrium quantum phase transition and the dynamical phase transition in this model are intimately related.Comment: 4+4 pages, 4 figures, Appendix adde

    Failure of Scattering Interference in the Pseudogap State of Cuprate Superconductors

    Full text link
    We calculate scattering interference patterns for various electronic states proposed for the pseudogap regime of the cuprate superconductors. The scattering interference models all produce patterns whose wavelength changes as a function of energy, in contradiction to the energy-independent wavelength seen by scanning tunneling microscopy (STM) experiments in the pseudogap state. This suggests that the patterns seen in STM local density of states measurements are not due to scattering interference, but are rather the result of some form of ordering.Comment: To be submitted to Phys. Rev.

    Modulation of the local density of states within the dd-density wave theory in the underdoped cuprates

    Full text link
    The low temperature scanning tunneling microscopy spectra in the underdoped regime is analyzed from the perspective of coexisting dd-density wave and d-wave superconducting states. The calculations are carried out in the presence of a low concentration of unitary impurities and within the framework of the fully self-consistent Bogoliubov-de Gennes theory, which allows local modulations of the magnitude of the order parameters in response to the impurities. Our theory captures the essential aspects of the experiments in the underdoped BSCCO at very low temperatures.Comment: 4 pages, 4 eps figures, RevTex4. New added material as well as reference

    Superfluid-insulator transition in a moving system of interacting bosons

    Full text link
    We analyze stability of superfluid currents in a system of strongly interacting ultra-cold atoms in an optical lattice. We show that such a system undergoes a dynamic, irreversible phase transition at a critical phase gradient that depends on the interaction strength between atoms. At commensurate filling, the phase boundary continuously interpolates between the classical modulation instability of a weakly interacting condensate and the equilibrium quantum phase transition into a Mott insulator state at which the critical current vanishes. We argue that quantum fluctuations smear the transition boundary in low dimensional systems. Finally we discuss the implications to realistic experiments.Comment: updated refernces and introduction, minor correction

    Dynamic Kosterlitz-Thouless transition in 2D Bose mixtures of ultra-cold atoms

    Full text link
    We propose a realistic experiment to demonstrate a dynamic Kosterlitz-Thouless transition in ultra-cold atomic gases in two dimensions. With a numerical implementation of the Truncated Wigner Approximation we simulate the time evolution of several correlation functions, which can be measured via matter wave interference. We demonstrate that the relaxational dynamics is well-described by a real-time renormalization group approach, and argue that these experiments can guide the development of a theoretical framework for the understanding of critical dynamics.Comment: 5 pages, 6 figure

    Light cone dynamics and reverse Kibble-Zurek mechanism in two-dimensional superfluids following a quantum quench

    Full text link
    We study the dynamics of the relative phase of a bilayer of two-dimensional superfluids after the two superfluids have been decoupled. We find that on short time scales the relative phase shows "light cone" like dynamics and creates a metastable superfluid state, which can be supercritical. We also demonstrate similar light cone dynamics for the transverse field Ising model. On longer time scales the supercritical state relaxes to a disordered state due to dynamical vortex unbinding. This scenario of dynamically suppressed vortex proliferation constitutes a reverse-Kibble-Zurek effect. We study this effect both numerically using truncated Wigner approximation and analytically within a newly suggested time dependent renormalization group approach (RG). In particular, within RG we show that there are two possible fixed points for the real time evolution corresponding to the superfluid and normal steady states. So depending on the initial conditions and the microscopic parameters of the Hamiltonian the system undergoes a non-equilibrium phase transition of the Kosterlitz-Thouless type. The time scales for the vortex unbinding near the critical point are exponentially divergent, similar to the equilibrium case.Comment: 14 pages, 10 figure

    Periodic Coherence Peak Height Modulations in Superconducting BSCCO

    Full text link
    In this paper we analyze, using scanning tunneling spectroscopy (STS), the local density of electronic states (LDOS) in nearly optimally doped BSCCO in zero field. We see both dispersive and non-dispersive spatial LDOS modulations as a function of energy in our samples. Moreover, a spatial map of the superconducting coherence peak heights shows the same structure as the low energy LDOS. This suggests that these non-dispersive LDOS modulations originate from an underlying charge-density modulation which interacts with superconductivity.Comment: 8 pages, 5 figures with 15 total eps file

    Time-resolved Observation and Control of Superexchange Interactions with Ultracold Atoms in Optical Lattices

    Full text link
    Quantum mechanical superexchange interactions form the basis of quantum magnetism in strongly correlated electronic media. We report on the direct measurement of superexchange interactions with ultracold atoms in optical lattices. After preparing a spin-mixture of ultracold atoms in an antiferromagnetically ordered state, we measure a coherent superexchange-mediated spin dynamics with coupling energies from 5 Hz up to 1 kHz. By dynamically modifying the potential bias between neighboring lattice sites, the magnitude and sign of the superexchange interaction can be controlled, thus allowing the system to be switched between antiferromagnetic or ferromagnetic spin interactions. We compare our findings to predictions of a two-site Bose-Hubbard model and find very good agreement, but are also able to identify corrections which can be explained by the inclusion of direct nearest-neighbor interactions.Comment: 24 pages, 7 figure
    corecore