5,648 research outputs found

    Metal Abundances of KISS Galaxies. VI. New Metallicity Relations for the KISS Sample of Star-Forming Galaxies

    Full text link
    We present updated metallicity relations for the spectral database of star-forming galaxies (SFGs) found in the KPNO International Spectroscopic Survey (KISS). New spectral observations of emission-line galaxies (ELGs) obtained from a variety of telescope facilities provide oxygen abundance information. A nearly four-fold increase in the number of KISS objects with robust metallicities relative to our previous analysis provides for an empirical abundance calibration to compute self-consistent metallicity estimates for all SFGs in the sample with adequate spectral data. In addition, a sophisticated spectral energy distribution (SED) fitting routine has provided robust calculations of stellar mass. With these new and/or improved galaxy characteristics, we have developed luminosity-metallicity (LL-ZZ) relations, mass-metallicity (M∗M_{*}-ZZ) relations, and the so-called Fundamental Metallicity Relation (FMR) for over 1,450 galaxies from the KISS sample. This KISS M∗M_{*}-ZZ relation is presented for the first time and demonstrates markedly lower scatter than the KISS LL-ZZ relation. We find that our relations agree reasonably well with previous publications, modulo modest offsets due to differences in the SEL metallicity calibrations used. We illustrate an important bias present in previous LL-ZZ and M∗M_{*}-ZZ studies involving direct-method (TeT_{e}) abundances that may result in systematically lower slopes in these relations. Our KISS FMR shows consistency with those found in the literature, albeit with a larger scatter. This is likely a consequence of the KISS sample being biased toward galaxies with high levels of activity.Comment: Accepted for publication in The Astronomical Journal; 27 pages, 15 figures, 7 tables (with Appendix

    Diffuse Atomic and Molecular Gas near IC443

    Full text link
    We present an analysis of results on absorption from Ca II, Ca I, K I, and the molecules CH+, CH, C2, and CN that probes gas interacting with the supernova remnant IC443. The eleven directions sample material across the visible nebula and beyond its eastern edge. Most of the neutral material, including the diatomic molecules, is associated with the ambient cloud detected via H I and CO emission. Analysis of excitation and chemistry yields gas densities that are typical of diffuse molecular gas. The low density gas probed by Ca II extends over a large range in velocities, from -120 to +80 km/s in the most extreme cases. This gas is distributed among several velocity components, unlike the situation for the shocked molecular clumps, whose emission occurs over much the same range but as very broad features. The extent of the high-velocity absorption suggests a shock velocity of 100 km/s for the expanding nebula.Comment: To be published in Ap

    Tracking the reflexivity of the (dis)engaged citizen: some methodological reflections

    Get PDF
    The relationship between governments and citizens in many contemporary democracies is haunted by uncertainty and sociologists face the task of listening effectively to citizens’ own reflections on this uncertain relationship. This article reflects on the qualitative methodology of a recently completed UK project which used a combination of diary and multiple interviews/ focus groups to track over a fieldwork period of up to a year citizens’ reflections on their relationship to a public world and the contribution to this of their media consumption. In particular, the article considers how the project’s multiple methods enabled multiple angles on the inevitable artificiality and performative dimension of the diary process, resulting in rich data on people’s complex reflections on the uncertain position of the contemporary citizen

    Asymptotic Giant Branch Stars in the Nearby Dwarf Galaxy Leo P

    Get PDF
    We have conducted a highly sensitive census of the evolved-star population in the metal-poor dwarf galaxy Leo P and detected four asymptotic giant branch (AGB) star candidates. Leo P is one of the best examples of a nearby analog of high-redshift galaxies because of its primitive metal content (2% of the solar value), proximity, and isolated nature, ensuring a less complicated history. Using medium-band optical photometry from the Hubble Space Telescope (HST), we have classified the AGB candidates by their chemical type. We have identified one oxygen-rich source which appears to be dusty in both the HST and Spitzer observations. Its brightness, however, suggests it may be a planetary nebula or post-AGB object. We have also identified three carbon-rich candidates, one of which may be dusty. Follow-up observations are needed to confirm the nature of these sources and to study the composition of any dust that they produce. If dust is confirmed, these stars would likely be among the most metal-poor examples of dust-producing stars known and will provide valuable insight into our understanding of dust formation at high redshift

    A JWST/MIRI and NIRCam Analysis of the Young Stellar Object Population in the Spitzer I region of NGC 6822

    Full text link
    We present an imaging survey of the Spitzer~I star-forming region in NGC 6822 conducted with the NIRCam and MIRI instruments onboard JWST. Located at a distance of 490 kpc, NGC 6822 is the nearest non-interacting low-metallicity (∌\sim0.2 Z⊙Z_{\odot}) dwarf galaxy. It hosts some of the brightest known HII regions in the local universe, including recently discovered sites of highly-embedded active star formation. Of these, Spitzer I is the youngest and most active, and houses 90 color-selected candidate young stellar objects (YSOs) identified from Spitzer Space Telescope observations. We revisit the YSO population of Spitzer~I with these new JWST observations. By analyzing color-magnitude diagrams (CMDs) constructed with NIRCam and MIRI data, we establish color selection criteria and construct spectral energy distributions (SEDs) to identify candidate YSOs and characterize the full population of young stars, from the most embedded phase to the more evolved stages. In this way, we have identified 129 YSOs in Spitzer I. Comparing to previous Spitzer studies of the NGC 6822 YSO population, we find that the YSOs we identify are fainter and less massive, indicating that the improved resolution of JWST allows us to resolve previously blended sources into individual stars.Comment: 17 pages, 9 figures, 2 tables, to be submitted to ApJ, comments welcom

    Gas Accretion via Lyman Limit Systems

    Full text link
    In cosmological simulations, a large fraction of the partial Lyman limit systems (pLLSs; 16<log N(HI)<17.2) and LLSs (17.2log N(HI)<19) probes large-scale flows in and out of galaxies through their circumgalactic medium (CGM). The overall low metallicity of the cold gaseous streams feeding galaxies seen in these simulations is the key to differentiating them from metal rich gas that is either outflowing or being recycled. In recent years, several groups have empirically determined an entirely new wealth of information on the pLLSs and LLSs over a wide range of redshifts. A major focus of the recent research has been to empirically determine the metallicity distribution of the gas probed by pLLSs and LLSs in sizable and representative samples at both low (z2) redshifts. Here I discuss unambiguous evidence for metal-poor gas at all z probed by the pLLSs and LLSs. At z<1, all the pLLSs and LLSs so far studied are located in the CGM of galaxies with projected distances <100-200 kpc. Regardless of the exact origin of the low-metallicity pLLSs/LLSs, there is a significant mass of cool, dense, low-metallicity gas in the CGM that may be available as fuel for continuing star formation in galaxies over cosmic time. As such, the metal-poor pLLSs and LLSs are currently among the best observational evidence of cold, metal-poor gas accretion onto galaxies.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springe
    • 

    corecore