621 research outputs found

    The combination of halogen and hydrogen bonding: a versatile tool in coordination chemistry

    Get PDF
    4-Iodo-N-(4-pyridyl)benzamide (INPBA) and four derived coordination complexes were synthesized in order to explore the combination of halogen and hydrogen bonding interactions in coordination chemistry. An electron-withdrawing carbonyl group attached to the aromatic ring bearing an iodine atom has been introduced to increase its halogen bonding ability. Single crystal X-ray diffraction analyses ofINPBA, [Ag(INPBA)2]NO3(1), [ZnBr2(INPBA)2](2), [Zn(OCOPh)2(INPBA)2](3) and[HgI2(INPBA)]n(4) show the versatility of theINPBAbuilding block yielding a variety of different interesting structures. Iodine atom arrangement plays a key role by reinforcing and extending crystalline structures into diverse 3D supramolecular networksviaI¿O, I¿N, and I¿I halogen bonding interactions. Besides this, the overall supramolecular architecture of the coordination complexes is modulated by the N-H¿O, N-H¿Br, and C-H¿O hydrogen bonds formed by the carboxamide group. The combination of both, halogen and hydrogen bonds, allows very different coordination networks to be designed

    Discovery of New, Dust-Poor B[e] Supergiants in the Small Magellanic Cloud

    Full text link
    We present the discovery of three new B[e] supergiants (sgB[e] stars) in the Small Magellanic Cloud (SMC). All three stars (R15, R38, and R48) were identified in the course of our Runaways and Isolated O Type Star Spectroscopic Survey of the SMC (RIOTS4). The stars show optical spectra that closely resemble those of previously known B[e] stars, presenting numerous low-ionization forbidden and permitted emission lines such as [Fe II] and Fe II. Furthermore, our stars have luminosities of log(L/L_sun) > 4, demonstrating that they are supergiants. However, we find lower infrared excesses and weaker forbidden emission lines than for previously identified B[e] supergiants. Thus our stars appear to either have less material in their circumstellar disks than other sgB[e] stars, or the circumstellar material has lower dust content. We suggest that these may constitute a new subclass of dust-poor sgB[e] stars.Comment: 7 pages, 6 figures, accepted to Ap

    Energy Efficiency Improvement Opportunities in the Global Industrial Sector

    Get PDF
    The industrial sector is a major energy consumer, responsible for about 35% of global energy use. In this article we focus on past developments of energy use and greenhouse gas emissions in industries and for the biggest energy consuming sectors we give an overview of energy saving opportunities. We find that about 60% of industrial energy use is consumed in four sectors, which are chemicals, iron and steel, cement and oil refineries. Coal is the most often used energy carrier (28%), followed by oil (26%), natural gas (19%) and electricity (18%). The implementation of best available technologies can lead to a reduction of about 20%–40% of energy use and greenhouse gas emissions, depending on country and sector

    Stars made in outflows may populate the stellar halo of the Milky Way

    Get PDF
    We study stellar-halo formation using six Milky-Way-mass galaxies in FIRE-2 cosmological zoom simulations. We find that 5-40 per cent of the outer (50-300 kpc) stellar halo in each system consists of in-situ stars that were born in outflows from the main galaxy. Outflow stars originate from gas accelerated by superbubble winds, which can be compressed, cool, and form co-moving stars. The majority of these stars remain bound to the halo and fall back with orbital properties similar to the rest of the stellar halo at z = 0. In the outer halo, outflow stars are more spatially homogeneous, metal-rich, and alpha-element-enhanced than the accreted stellar halo. At the solar location, up to ∼10 per cent of our kinematically identified halo stars were born in outflows; the fraction rises to as high as ∼40 per cent for the most metal-rich local halo stars ([Fe/H] >-0.5). Such stars can be retrograde and create features similar to the recently discoveredMilkyWay 'Splash' in phase space.We conclude that theMilkyWay stellar halo could contain local counterparts to stars that are observed to form in molecular outflows in distant galaxies. Searches for such a population may provide a new, near-field approach to constraining feedback and outflow physics. A stellar halo contribution from outflows is a phase-reversal of the classic halo formation scenario of Eggen, Lynden-Bell & Sandange, who suggested that halo stars formed in rapidly infalling gas clouds. Stellar outflows may be observable in direct imaging of external galaxies and could provide a source for metal-rich, extreme-velocity stars in the Milky Way
    • …
    corecore