3,076 research outputs found

    Driving quantum walk spreading with the coin operator

    Full text link
    We generalize the discrete quantum walk on the line using a time dependent unitary coin operator. We find an analytical relation between the long-time behaviors of the standard deviation and the coin operator. Selecting the coin time sequence allows to obtain a variety of predetermined asymptotic wave-function spreadings: ballistic, sub-ballistic, diffusive, sub-diffusive and localized.Comment: 6 pages, 3 figures, appendix added. to appear in PR

    On the dissipative effects in the electron transport through conducting polymer nanofibers

    Full text link
    Here, we study the effects of stochastic nuclear motions on the electron transport in doped polymer fibers assuming the conducting state of the material. We treat conducting polymers as granular metals and apply the quantum theory of conduction in mesoscopic systems to describe the electron transport between the metalliclike granules. To analyze the effects of nuclear motions we mimic them by the phonon bath, and we include the electron-phonon interactions in consideration. Our results show that the phonon bath plays a crucial part in the intergrain electron transport at moderately low and room temperatures suppressing the original intermediate state for the resonance electron tunneling, and producing new states which support the electron transport.Comment: 6 pages, 4 figures, minor changes are made in the Fig. 3, accepted for publication in J. of Chem. Phys

    Stationary point approach to the phase transition of the classical XY chain with power-law interactions

    Full text link
    The stationary points of the Hamiltonian H of the classical XY chain with power-law pair interactions (i.e., decaying like r^{-{\alpha}} with the distance) are analyzed. For a class of "spinwave-type" stationary points, the asymptotic behavior of the Hessian determinant of H is computed analytically in the limit of large system size. The computation is based on the Toeplitz property of the Hessian and makes use of a Szeg\"o-type theorem. The results serve to illustrate a recently discovered relation between phase transitions and the properties of stationary points of classical many-body Hamiltonian functions. In agreement with this relation, the exact phase transition energy of the model can be read off from the behavior of the Hessian determinant for exponents {\alpha} between zero and one. For {\alpha} between one and two, the phase transition is not manifest in the behavior of the determinant, and it might be necessary to consider larger classes of stationary points.Comment: 9 pages, 6 figure

    Kekule-distortion-induced Exciton instability in graphene

    Full text link
    Effects of a Kekule distortion on exciton instability in single-layer graphene are discussed. In the framework of quantum electrodynamics the mass of the electron generated dynamically is worked out using a Schwinger-Dyson equation. For homogeneous lattice distortion it is shown that the generated mass is independent of the amplitude of the lattice distortion at the one-loop approximation. Formation of excitons induced by the homogeneous Kekule distortion could appear only through direct dependence of the lattice distortion.Comment: 6 pages, 1 figur

    Soluble Models of Strongly Interacting Ultracold Gas Mixtures in Tight Waveguides

    Full text link
    A generalized Fermi-Bose mapping method is used to determine the exact ground states of several models of mixtures of strongly interacting ultracold gases in tight waveguides, which are generalizations of the Tonks-Girardeau (TG) gas (1D Bose gas with point hard cores) and fermionic Tonks-Girardeau (FTG) gas (1D spin-aligned Fermi gas with infinitely strong zero-range attractions). We detail the case of a Bose-Fermi mixture with TG boson-boson (BB) and boson-fermion (BF) interactions. Exact results are given for density profiles in a harmonic trap, single-particle density matrices, momentum distributions, and density-density correlations. Since the ground state is highly degenerate, we analyze the splitting of the ground manifold for large but finite BB and BF repulsions.Comment: Revised to discuss splitting of degenerate ground manifold for large but finite BB and BF repulsions; accepted by PR

    Time-dependent quantum transport in a resonant tunnel junction coupled to a nanomechanical oscillator

    Full text link
    We present a theoretical study of time-dependent quantum transport in a resonant tunnel junction coupled to a nanomechanical oscillator within the non-equilibrium Green's function technique. An arbitrary voltage is applied to the tunnel junction and electrons in the leads are considered to be at zero temperature. The transient and the steady state behavior of the system is considered here in order to explore the quantum dynamics of the oscillator as a function of time. The properties of the phonon distribution of the nanomechnical oscillator strongly coupled to the electrons on the dot are investigated using a non-perturbative approach. We consider both the energy transferred from the electrons to the oscillator and the Fano factor as a function of time. We discuss the quantum dynamics of the nanomechanical oscillator in terms of pure and mixed states. We have found a significant difference between a quantum and a classical oscillator. In particular, the energy of a classical oscillator will always be dissipated by the electrons whereas the quantum oscillator remains in an excited state. This will provide useful insight for the design of experiments aimed at studying the quantum behavior of an oscillator.Comment: 24 pages, 10 figure

    Diffusive Boundary Layers in the Free-Surface Excitable Medium Spiral

    Full text link
    Spiral waves are a ubiquitous feature of the nonequilibrium dynamics of a great variety of excitable systems. In the limit of a large separation in timescale between fast excitation and slow recovery, one can reduce the spiral problem to one involving the motion of a free surface separating the excited and quiescent phases. In this work, we study the free surface problem in the limit of small diffusivity for the slow field variable. Specifically, we show that a previously found spiral solution in the diffusionless limit can be extended to finite diffusivity, without significant alteration. This extension involves the creation of a variety of boundary layers which cure all the undesirable singularities of the aforementioned solution. The implications of our results for the study of spiral stability are briefly discussed.Comment: 6 pages, submitted to PRE Rapid Com

    A note on the Casimir energy of a massive scalar field in positive curvature space

    Full text link
    We re-evaluate the zero point Casimir energy for the case of a massive scalar field in R1Ă—S3\mathbf{R}^{1}\times\mathbf{S}^{3} space, allowing also for deviations from the standard conformal value Îľ=1/6\xi =1/6, by means of zero temperature zeta function techniques. We show that for the problem at hand this approach is equivalent to the high temperature regularization of the vacuum energy, as conjectured in a previous publication. Two different, albeit equally valid, ways of doing the analytic continuation are described.Comment: 6 pages, no figure

    Tensor Microwave Background Fluctuations for Large Multipole Order

    Get PDF
    We present approximate formulas for the tensor BB, EE, TT, and TE multipole coefficients for large multipole order l. The error in using the approximate formula for the BB multipole coefficients is less than cosmic variance for l>10. These approximate formulas make various qualitative properties of the calculated multipole coefficients transparent: specifically, they show that, whatever values are chosen for cosmological parameters, the tensor EE multipole coefficients will always be larger than the BB coefficients for all l>15, and that these coefficients will approach each other for l<<100. These approximations also make clear how these multipole coefficients depend on cosmological parameters.Comment: 19 pages, 9 figures, accepted for publication in Phys. Rev. D, references and comments on earlier work on the subject added, cosmetic modification of figure

    An integral formula for L^2-eigenfunctions of a fourth order Bessel-type differential operator

    Full text link
    We find an explicit integral formula for the eigenfunctions of a fourth order differential operator against the kernel involving two Bessel functions. Our formula establishes the relation between K-types in two different realizations of the minimal representation of the indefinite orthogonal group, namely the L^2-model and the conformal model
    • …
    corecore