Here, we study the effects of stochastic nuclear motions on the electron
transport in doped polymer fibers assuming the conducting state of the
material. We treat conducting polymers as granular metals and apply the quantum
theory of conduction in mesoscopic systems to describe the electron transport
between the metalliclike granules. To analyze the effects of nuclear motions we
mimic them by the phonon bath, and we include the electron-phonon interactions
in consideration. Our results show that the phonon bath plays a crucial part in
the intergrain electron transport at moderately low and room temperatures
suppressing the original intermediate state for the resonance electron
tunneling, and producing new states which support the electron transport.Comment: 6 pages, 4 figures, minor changes are made in the Fig. 3, accepted
for publication in J. of Chem. Phys