30,445 research outputs found

    Past plant use in Jordan as revealed by archaeological and ethnoarchaeological phytolith signatures

    Get PDF
    Ninety-six phytolith samples were analysed from seven archaeological sites ranging from the Pre-Pottery Neolithic to the Classical period and from two ethnoarchaeological sites in Jordan. The aims were to test the possibility of detecting past irrigation with the methodology outlined by Madella et al. (2009) and Jenkins et al. (Chapter 21, this volume) and to study the contextual and temporal variation of plant use in Jordan. We utilised a water availability index using the proportion of phytolith types and ordination statistical methods to explore the similarities between the phytolith assemblages. The result of applying the irrigation methodology was promising, with contexts from water channels showing the greatest indication of water availability. Changes in plant use through time were also apparent with regard to phytolith densities and taxonomy. Date palm was identified in the Pottery Neolithic, providing one of the earliest records for this taxon in Jordan. This study shows the potential of both the water availability index and the value of inter-site comparison of phytolith assemblages

    Particle trapping and banding in rapid solidification

    Get PDF
    Solidification of suspensions of small particles, from nanometer to colloidal (sub-micrometer) sizes, produces biomimetic materials with novel microstructure and expanding applications in microfluidics, nanotechnology and tissue engineering. To facilitate understanding and control of the solidification process, a thermodynamically consistent theory is here developed. We use the Boltzmann particle velocity distribution to determine the probability a particle is engulfed by an advancing solid-liquid interface and obtain the resulting kinetic phase diagram. We demonstrate use of the theory by predicting the formation of bands in rapidly solidified alumina suspensions, in quantitative agreement with experiment

    Use of mathematical derivatives (time-domain differentiation) on chromatographic data to enhance the detection and quantification of an unknown 'rider' peak

    Get PDF
    Two samples of an anticancer prodrug, AQ4N, were submitted for HPLC assay and showed an unidentified impurity that eluted as a 'rider' on the tail of the main peak. Mathematical derivatization of the chromatograms offered several advantages over conventional skimmed integration. A combination of the second derivative amplitude and simple linear regression gave a novel method for estimating the true peak area of the impurity peak. All the calculation steps were carried out using a widely available spreadsheet program. (C) 2003 Elsevier B.V. All rights reserved

    Modulated phases of a 1D sharp interface model in a magnetic field

    Full text link
    We investigate the ground states of 1D continuum models having short-range ferromagnetic type interactions and a wide class of competing longer-range antiferromagnetic type interactions. The model is defined in terms of an energy functional, which can be thought of as the Hamiltonian of a coarse-grained microscopic system or as a mesoscopic free energy functional describing various materials. We prove that the ground state is simple periodic whatever the prescribed total magnetization might be. Previous studies of this model of frustrated systems assumed this simple periodicity but, as in many examples in condensed matter physics, it is neither obvious nor always true that ground states do not have a more complicated, or even chaotic structure.Comment: 12 pages, 3 figure

    A Radon Progeny Deposition Model

    Full text link
    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly Rn-222) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of Pb-210 on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.Comment: Proceedings of the Topical Workshop in Low Radioactivity Techniques, (Sudbury, Canada) August 28-29, 201
    corecore