1,024 research outputs found

    Determination of Fluorescence Polarization and Absorption Anisotropy in Molecular Complexes Having Threefold Rotational Symmetry

    Get PDF
    The current work concerns investigation of the polarization properties of complex molecular ensembles exhibiting threefold (C3) rotational symmetry, particularly with regard to the interplay between their structure and dynamics of internal energy transfer. We assume that the molecules or chromophores in such complexes possess strongly overlapped spectra both for absorption and fluorescence. Such trimeric structures are widely found in biological preparations, as for example the trimer of C-phycocyanin (C-PC). Higher order aggregates, e.g. hex-amers and three-hexamer rods, are also investigated and compared with the trimer case. The theory addresses both steady-state and 8-pulse excitation and establishes some links between them. Monochromophoric, bichro-mophoric and trichromophoric molecular complexes are individually examined. For steady-state excitation, analytical formulas are reported for the degree of fluorescence polarization and absorption anisotropy. It is shown that the polarization is dependent on the chromophore inclination relative to the symmetry axis, the relative efficiencies of absorption and fluorescence by chromophores of different spectral types, and the rates of energy equilibration. To assess the validity of the theory, it has been applied to C-PC aggregates. Here it was found that different C-PC aggregates provide practically identical polarization response. For S-pulse excitation we give analytical formulas for determination of the fluorescence depolarization, and also the depolarization associated with absorption recovery, both for a monochromophoric trimer and some particular cases of bichromophoric trimer. More complicated systems are analyzed by computer modeling. Thus it transpires that the initial polarization anisotropy r(t = 0) takes the value 0.4 for all considered aggregates; the long-time limit r(t →∞) has about the same value as is associated with steady-state excitation. We also show that with steady-state excitation the degree of fluorescence polarization is practically equal for various C3 aggregates of C-PC, and that the major factor determining the polarization is the chromophore orientation relative to the symmetry axis

    Gauge theory solitons on noncommutative cylinder

    Get PDF
    We generalize to noncommutative cylinder the solution generation technique, originally suggested for gauge theories on noncommutative plane. For this purpose we construct partial isometry operators and complete set of orthogonal projectors in the algebra of the cylinder, and an isomorphism between the free module and its direct sum with the Fock module on the cylinder. We construct explicitly the gauge theory soliton and evaluate the spectrum of perturbations about this soliton.Comment: References added; to appear in Theor.Math.Phy

    Quantum Electronic Transport through a Precessing Spin

    Full text link
    The conductance through a local nuclear spin precessing in a magnetic field is studied by using the equations-of-motion approach. The characteristics of the conductance is determined by the tunneling matrix and the position of equilibrium chemical potential. We find that the spin flip coupling between the electrons on the spin site and the leads produces the conductance oscillation. When the spin is precessing in the magnetic field at Larmor frequency (ωL\omega_{L}), the conductance develops the oscillation with the frequency of both ωL\omega_{L} and 2ωL\omega_{L} components, the relative spectrum weight of which can be tuned by the chemical potential and the spin flip coupling.Comment: 5 pages, 3 figure

    Secondary electron emission yield in the limit of low electron energy

    Full text link
    Secondary electron emission (SEE) from solids plays an important role in many areas of science and technology.1 In recent years, there has been renewed interest in the experimental and theoretical studies of SEE. A recent study proposed that the reflectivity of very low energy electrons from solid surface approaches unity in the limit of zero electron energy2,3,4, If this was indeed the case, this effect would have profound implications on the formation of electron clouds in particle accelerators,2-4 plasma measurements with electrostatic Langmuir probes, and operation of Hall plasma thrusters for spacecraft propulsion5,6. It appears that, the proposed high electron reflectivity at low electron energies contradicts to numerous previous experimental studies of the secondary electron emission7. The goal of this note is to discuss possible causes of these contradictions.Comment: 3 pages, contribution to the Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects: ECLOUD'12; 5-9 Jun 2012, La Biodola, Isola d'Elba, Ital
    • …
    corecore