1,521 research outputs found

    Is the Redshift Clustering of Long-Duration Gamma-Ray Bursts Significant?

    Full text link
    The 26 long-duration gamma-ray bursts (GRBs) with known redshifts form a distinct cosmological set, selected differently than other cosmological probes such as quasars and galaxies. Since the progenitors are now believed to be connected with active star-formation and since burst emission penetrates dust, one hope is that with a uniformly-selected sample, the large-scale redshift distribution of GRBs can help constrain the star-formation history of the Universe. However, we show that strong observational biases in ground-based redshift discovery hamper a clean determination of the large-scale GRB rate and hence the connection of GRBs to the star formation history. We then focus on the properties of the small-scale (clustering) distribution of GRB redshifts. When corrected for heliocentric motion relative to the local Hubble flow, the observed redshifts appear to show a propensity for clustering: 8 of 26 GRBs occurred within a recession velocity difference of 1000 km/s of another GRB. That is, 4 pairs of GRBs occurred within 30 h_65^-1 Myr in cosmic time, despite being causally separated on the sky. We investigate the significance of this clustering. Comparison of the numbers of close redshift pairs expected from the simulation with that observed shows no significant small-scale clustering excess in the present sample; however, the four close pairs occur only in about twenty percent of the simulated datasets (the precise significance of the clustering is dependent upon the modeled biases). We conclude with some impetuses and suggestions for future precise GRB redshift measurements.Comment: Published in the Astronomical Journal, June 2003: see http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2003AJ....125.2865

    Evidence for a Positive Cosmological Constant from Flows of Galaxies and Distant Supernovae

    Full text link
    Recent observations of high-redshift supernovae seem to suggest that the global geometry of the Universe may be affected by a `cosmological constant', which acts to accelerate the expansion rate with time. But these data by themselves still permit an open universe of low mass density and no cosmological constant. Here we derive an independent constraint on the lower bound to the mass density, based on deviations of galaxy velocities from a smooth universal expansion. This constraint rules out a low-density open universe with a vanishing cosmological constant, and together the two favour a nearly flat universe in which the contributions from mass density and the cosmological constant are comparable. This type of universe, however, seems to require a degree of fine tuning of the initial conditions that is in apparent conflict with `common wisdom'.Comment: 8 pages, 1 figure. Slightly revised version. Letter to Natur

    OMEGA AND BIASING FROM OPTICAL GALAXIES VERSUS POTENT MASS

    Full text link
    The mass density field in the local universe, recovered by the POTENT method from peculiar velocities of ∼\sim3000 galaxies, is compared with the density field of optically-selected galaxies. Both density fields are smoothed with a Gaussian filter of radius 12 h−1h^{-1} Mpc. Under the assumptions of gravitational instability and a linear biasing parameter b\sbo between optical galaxies and mass, we obtain \beta\sbo \equiv \om^{0.6}/b\sbo = 0.74 \pm 0.13. This result is obtained from a regression of POTENT mass density on optical density after correcting the mass density field for systematic biases in the velocity data and POTENT method. The error quoted is just the 1σ1\sigma formal error estimated from the observed scatter in the density--density scatterplot; it does not include the uncertainty due to cosmic scatter in the mean density or in the biasing relation. We do not attempt a formal analysis of the goodness of fit, but the scatter about the fit is consistent with our estimates of the uncertainties.Comment: Final revised version (minor typos corrected). 13 pages, gzipped tar file containing LaTeX and figures. The Postscript file is available at ftp://dust0.dur.ac.uk/pub/mjh/potopt/potopt.ps.Z or (gzipped) at ftp://xxx.lanl.gov/astro-ph/ps/9501/9501074.ps.gz or via WWW at http://xxx.lanl.gov/ps/astro-ph/9501074 or as separate LaTeX text and encapsulated Postscript figures in a compressed tar'd file at ftp://dust0.dur.ac.uk/pub/mjh/potopt/latex/potopt.tar.

    Non-linear Stochastic Galaxy Biasing in Cosmological Simulations

    Get PDF
    We study the biasing relation between dark-matter halos or galaxies and the underlying mass distribution, using cosmological NN-body simulations in which galaxies are modelled via semi-analytic recipes. The nonlinear, stochastic biasing is quantified in terms of the mean biasing function and the scatter about it as a function of time, scale and object properties. The biasing of galaxies and halos shows a general similarity and a characteristic shape, with no galaxies in deep voids and a steep slope in moderately underdense regions. At \sim 8\hmpc, the nonlinearity is typically \lsim 10 percent and the stochasticity is a few tens of percent, corresponding to ∼30\sim 30 percent variations in the cosmological parameter β=Ω0.6/b\beta=\Omega^{0.6}/b. Biasing depends weakly on halo mass, galaxy luminosity, and scale. The time evolution is rapid, with the mean biasing larger by a factor of a few at z∼3z\sim 3 compared to z=0z=0, and with a minimum for the nonlinearity and stochasticity at an intermediate redshift. Biasing today is a weak function of the cosmological model, reflecting the weak dependence on the power-spectrum shape, but the time evolution is more cosmology-dependent, relecting the effect of the growth rate. We provide predictions for the relative biasing of galaxies of different type and color, to be compared with upcoming large redshift surveys. Analytic models in which the number of objects is conserved underestimate the evolution of biasing, while models that explicitly account for merging provide a good description of the biasing of halos and its evolution, suggesting that merging is a crucial element in the evolution of biasing.Comment: 27 pages, 21 figures, submitted to MNRA
    • …
    corecore