3 research outputs found

    A two-way molecular dialogue between embryo and endosperm required for seed development

    No full text
    The plant embryonic cuticle is a hydrophobic barrier deposited de novo by the embryo during seed development. At germination it protects the seedling from water loss and is thus critical for survival. Embryonic cuticle formation is controlled by a signaling pathway involving the protease ALE1 and the receptor-like kinases GSO1 and GSO2. We show that a sulfated peptide, TWISTED SEED1 (TWS1) acts as a GSO1/GSO2 ligand. Cuticle surveillance depends on the action of ALE1 which, unlike TWS1 and GSO1/2, is not produced in the embryo but in the neighboring endosperm. Cleavage of an embryo-derived TWS1 precursor by ALE1 releases the active peptide, triggering GSO1/2-dependent cuticle reinforcement in the embryo. A bidirectional molecular dialogue between embryo and endosperm thus safeguards cuticle integrity prior to germination

    A two-way molecular dialogue between embryo and endosperm is required for seed development.

    No full text
    The plant embryonic cuticle is a hydrophobic barrier deposited de novo by the embryo during seed development. At germination, it protects the seedling from water loss and is, thus, critical for survival. Embryonic cuticle formation is controlled by a signaling pathway involving the ABNORMAL LEAF SHAPE1 subtilase and the two GASSHO receptor-like kinases. We show that a sulfated peptide, TWISTED SEED1 (TWS1), acts as a GASSHO ligand. Cuticle surveillance depends on the action of the subtilase, which, unlike the TWS1 precursor and the GASSHO receptors, is not produced in the embryo but in the neighboring endosperm. Subtilase-mediated processing of the embryo-derived TWS1 precursor releases the active peptide, triggering GASSHO-dependent cuticle reinforcement in the embryo. Thus, a bidirectional molecular dialogue between embryo and endosperm safeguards cuticle integrity before germination
    corecore