729 research outputs found

    Electron backscattering in a cavity: ballistic and coherent effects

    Full text link
    Numerous experimental and theoretical studies have focused on low-dimensional systems locally perturbed by the biased tip of a scanning force microscope. In all cases either open or closed weakly gate-tunable nanostructures have been investigated, such as quantum point contacts, open or closed quantum dots, etc. We study the behaviour of the conductance of a quantum point contact with a gradually forming adjacent cavity in series under the influence of a scanning gate. Here, an initially open quantum point contact system gradually turns into a closed cavity system. We observe branches and interference fringes known from quantum point contacts coexisting with irregular conductance fluctuations. Unlike the branches, the fluctuations cover the entire area of the cavity. In contrast to previous studies, we observe and investigate branches under the influence of the confining stadium potential, which is gradually built up. We find that the branches exist only in the area surrounded by cavity top gates. As the stadium shrinks, regular fringes originate from tip-induced constrictions leading to quantized conduction. In addition, we observe arc-like areas reminiscent of classical electron trajectories in a chaotic cavity. We also argue that electrons emanating from the quantum point contact spread out like a fan leaving branch-like regions of enhanced backscattering.Comment: 7 pages, 4 figure

    Nematic state of the FeSe superconductor

    Get PDF
    We study the crystal structure of the tetragonal iron selenide FeSe and its nematic phase transition to the low-temperature orthorhombic structure using synchrotron x-ray and neutron scattering analyzed in both real space and reciprocal space. We show that in the local structure the orthorhombic distortion associated with the electronically driven nematic order is more pronounced at short length scales. It also survives to temperatures above 90 K, where reciprocal-space analysis suggests tetragonal symmetry. Additionally, the real-space pair distribution function analysis of the synchrotron x-ray diffraction data reveals a tiny broadening of the peaks corresponding to the nearest Fe-Fe, nearest Fe-Se, and next-nearest Fe-Se bond distances as well as the tetrahedral torsion angles at a short length scale of 20 Ă…. This broadening appears below 20 K and is attributed to a pseudogap. However, we did not observe any further reduction in local symmetry below orthorhombic down to 3 K. Our results suggest that the superconducting gap anisotropy in FeSe is not associated with any symmetry-lowering short-range structural correlations

    Dynamic photoconductive gain effect in shallow-etched AlGaAs/GaAs quantum wires

    Full text link
    We report on a dynamic photoconductive gain effect in quantum wires which are lithographically fabricated in an AlGaAs/GaAs quantum well via a shallow-etch technique. The effect allows resolving the one-dimensional subbands of the quantum wires as maxima in the photoresponse across the quantum wires. We interpret the results by optically induced holes in the valence band of the quantum well which shift the chemical potential of the quantum wire. The non-linear current-voltage characteristics of the quantum wires also allow detecting the photoresponse effect of excess charge carriers in the conduction band of the quantum well. The dynamics of the photoconductive gain are limited by the recombination time of both electrons and holes

    The phase plane of moving discrete breathers

    Full text link
    We study anharmonic localization in a periodic five atom chain with quadratic-quartic spring potential. We use discrete symmetries to eliminate the degeneracies of the harmonic chain and easily find periodic orbits. We apply linear stability analysis to measure the frequency of phonon-like disturbances in the presence of breathers and to analyze the instabilities of breathers. We visualize the phase plane of breather motion directly and develop a technique for exciting pinned and moving breathers. We observe long-lived breathers that move chaotically and a global transition to chaos that prevents forming moving breathers at high energies.Comment: 8 pages text, 4 figures, submitted to Physical Review Letters. See http://www.msc.cornell.edu/~houle/localization

    Optically induced transport properties of freely suspended semiconductor submicron channels

    Full text link
    We report on optically induced transport phenomena in freely suspended channels containing a two-dimensional electron gas (2DEG). The submicron devices are fabricated in AlGaAs/GaAs heterostructures by etching techniques. The photoresponse of the devices can be understood in terms of the combination of photogating and a photodoping effect. The hereby enhanced electronic conductance exhibits a time constant in the range of one to ten milliseconds

    Negative effects of lodging on irrigated sugarcane productivity : an experimental and crop modelling assessment

    Get PDF
    Lodging lowers the productivity of sugarcane through a reduction in radiation use efficiency and stalkdamage. However, there are few reports of experiments specifically designed to quantify effects of lodg-ing in sugarcane. Efforts to model onset and progression of lodging, and the impact on crop productivity,have not been attempted. The objectives of this paper were to quantify effects of lodging on sugarcaneand to develop modeling capability in terms of predicting lodging onset, progression and impact. Fieldexperiments with irrigated ratoon crops were conducted at Pongola, South Africa. In one treatment thecane in each plot was allowed to grow through bamboo frames that prevented lodging. In the othertreatment, the cane was not supported and could lodge at any stage. The degree of lodging was capturedweekly by a rating that ranged from 1 to 9, where 1 = fully erect cane and 9 = completely lodged cane.At harvest estimated recoverable crystal percent (ERC %) of stalks and yield (cane and ERC) was mea-sured for each plot. Lodging resulted in decreased ERC yields of up to 20.6%. An algorithm for simulatinglodging when aboveground biomass (including rainfall and irrigation water retained on it) exceeds avariety-specific threshold, and which also considers wind speed and soil water content, was evaluatedfor predicting the extent and impact of lodging in the Pongola experiments, as well as for four deficitirrigation treatments of a field experiment conducted in Komatipoort, South Africa. The study showedthat the onset of lodging was simulated reasonably well for various soil/crop/atmospheric conditions,while the extent of lodging at harvest was simulated very accurately for all crops. Simulated lodging wasprimarily driven by crop size and lodging events were triggered by rainfall that added weight to the aerialmass of the crop, and reduced the anchoring ability of the soil through saturation of the top soil. Moreaccurate simulation of lodging, and its impacts on yield, will improve the accuracy of yield predictionsby crop models, increasing their value in applications such as crop forecasting, climate change studiesand exploring crop improvement and management options.South African Sugarcane Research Institute.http://www.elsevier.com/locate/fcr2016-08-31hb201

    First principles study of strain/electronic interplay in ZnO; Stress and temperature dependence of the piezoelectric constants

    Get PDF
    We present a first-principles study of the relationship between stress, temperature and electronic properties in piezoelectric ZnO. Our method is a plane wave pseudopotential implementation of density functional theory and density functional linear response within the local density approximation. We observe marked changes in the piezoelectric and dielectric constants when the material is distorted. This stress dependence is the result of strong, bond length dependent, hybridization between the O 2p2p and Zn 3d3d electrons. Our results indicate that fine tuning of the piezoelectric properties for specific device applications can be achieved by control of the ZnO lattice constant, for example by epitaxial growth on an appropriate substrate.Comment: accepted for publication in Phys. Rev.

    Random Field and Random Anisotropy Effects in Defect-Free Three-Dimensional XY Models

    Full text link
    Monte Carlo simulations have been used to study a vortex-free XY ferromagnet with a random field or a random anisotropy on simple cubic lattices. In the random field case, which can be related to a charge-density wave pinned by random point defects, it is found that long-range order is destroyed even for weak randomness. In the random anisotropy case, which can be related to a randomly pinned spin-density wave, the long-range order is not destroyed and the correlation length is finite. In both cases there are many local minima of the free energy separated by high entropy barriers. Our results for the random field case are consistent with the existence of a Bragg glass phase of the type discussed by Emig, Bogner and Nattermann.Comment: 10 pages, including 2 figures, extensively revise

    Fractional Generalization of Gradient Systems

    Full text link
    We consider a fractional generalization of gradient systems. We use differential forms and exterior derivatives of fractional orders. Examples of fractional gradient systems are considered. We describe the stationary states of these systems.Comment: 11 pages, LaTe
    • …
    corecore