21 research outputs found

    A Dialogue of Multipoles: Matched Asymptotic Expansion for Caged Black Holes

    Full text link
    No analytic solution is known to date for a black hole in a compact dimension. We develop an analytic perturbation theory where the small parameter is the size of the black hole relative to the size of the compact dimension. We set up a general procedure for an arbitrary order in the perturbation series based on an asymptotic matched expansion between two coordinate patches: the near horizon zone and the asymptotic zone. The procedure is ordinary perturbation expansion in each zone, where additionally some boundary data comes from the other zone, and so the procedure alternates between the zones. It can be viewed as a dialogue of multipoles where the black hole changes its shape (mass multipoles) in response to the field (multipoles) created by its periodic "mirrors", and that in turn changes its field and so on. We present the leading correction to the full metric including the first correction to the area-temperature relation, the leading term for black hole eccentricity and the "Archimedes effect". The next order corrections will appear in a sequel. On the way we determine independently the static perturbations of the Schwarzschild black hole in dimension d>=5, where the system of equations can be reduced to "a master equation" - a single ordinary differential equation. The solutions are hypergeometric functions which in some cases reduce to polynomials.Comment: 47 pages, 12 figures, minor corrections described at the end of the introductio

    Holographic Correlators in a Flow to a Fixed Point

    Get PDF
    Using holographic renormalization, we study correlation functions throughout a renormalization group flow between two-dimensional superconformal field theories. The ultraviolet theory is an N=(4,4) CFT which can be thought of as a symmetric product of U(2) super WZW models. It is perturbed by a relevant operator which preserves one-quarter supersymmetry and drives the theory to an infrared fixed point. We compute correlators of the stress-energy tensor and of the relevant operators dual to supergravity scalars. Using the former, we put together Zamolodchikov's C function, and contrast it with proposals for a holographic C function. In passing, we address and resolve two puzzles also found in the case of five-dimensional bulk supergravity.Comment: LaTeX2e, 48 pages, 4 figure

    Soliton surfaces via zero-curvature representation of differential equations

    Full text link
    The main aim of this paper is to introduce a new version of the Fokas-Gel'fand formula for immersion of soliton surfaces in Lie algebras. The paper contains a detailed exposition of the technique for obtaining exact forms of 2D-surfaces associated with any solution of a given nonlinear ordinary differential equation (ODE) which can be written in zero-curvature form. That is, for any generalized symmetry of the zero-curvature condition of the associated integrable model, it is possible to construct soliton surfaces whose Gauss-Mainardi-Codazzi equations are equivalent to infinitesimal deformations of the zero-curvature representation of the considered model. Conversely, it is shown (Proposition 1) that for a given immersion function of a 2D-soliton surface in a Lie algebra, it possible to derive the associated generalized vector field in evolutionary form which characterizes all symmetries of the zero-curvature condition. The theoretical considerations are illustrated via surfaces associated with the Painlev\'e equations P1, P2 and P3, including transcendental functions, the special cases of the rational and Airy solutions of P2 and the classical solutions of P3.Comment: 28 pages, 2 figure
    corecore