112 research outputs found

    Viscoelasticity and metastability limit in supercooled liquids

    Full text link
    A supercooled liquid is said to have a kinetic spinodal if a temperature Tsp exists below which the liquid relaxation time exceeds the crystal nucleation time. We revisit classical nucleation theory taking into account the viscoelastic response of the liquid to the formation of crystal nuclei and find that the kinetic spinodal is strongly influenced by elastic effects. We introduce a dimensionless parameter \lambda, which is essentially the ratio between the infinite frequency shear modulus and the enthalpy of fusion of the crystal. In systems where \lambda is larger than a critical value \lambda_c the metastability limit is totally suppressed, independently of the surface tension. On the other hand, if \lambda < \lambda_c a kinetic spinodal is present and the time needed to experimentally observe it scales as exp[\omega/(\lambda_c-\lambda)^2], where \omega is roughly the ratio between surface tension and enthalpy of fusion

    Domain enhanced interlayer coupling in ferroelectric/paraelectric superlattices

    Full text link
    We investigate the ferroelectric phase transition and domain formation in a periodic superlattice consisting of alternate ferroelectric (FE) and paraelectric (PE) layers of nanometric thickness. We find that the polarization domains formed in the different FE layers can interact with each other via the PE layers. By coupling the electrostatic equations with those obtained by minimizing the Ginzburg-Landau functional we calculate the critical temperature of transition Tc as a function of the FE/PE superlattice wavelength and quantitatively explain the recent experimental observation of a thickness dependence of the ferroelectric transition temperature in KTaO3/KNbO3 strained-layer superlattices.Comment: Latest version as was published in PR

    Droplet Fluctuations in the Morphology and Kinetics of Martensites

    Full text link
    We derive a coarse grained, free-energy functional which describes droplet configurations arising on nucleation of a product crystal within a parent. This involves a new `slow' vacancy mode that lives at the parent-product interface. A mode-coupling theory suggests that a {\it slow} quench from the parent phase produces an equilibrium product, while a {\it fast} quench produces a metastable martensite. In two dimensions, the martensite nuclei grow as `lens-shaped' strips having alternating twin domains, with well-defined front velocities. Several empirically known structural and kinetic relations drop out naturally from our theory.Comment: 4 pages, REVTEX, and 3 .eps figures, compressed and uuencoded, Submitted to Phys. Rev. Let

    Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures

    Full text link
    A Landau-Ginsburg-Devonshire-type nonlinear phenomenological theory is presented, which enables the thermodynamic description of dense laminar polydomain states in epitaxial ferroelectric thin films. The theory explicitly takes into account the mechanical substrate effect on the polarizations and lattice strains in dissimilar elastic domains (twins). Numerical calculations are performed for PbTiO3 and BaTiO3 films grown on (001)-oriented cubic substrates. The "misfit strain-temperature" phase diagrams are developed for these films, showing stability ranges of various possible polydomain and single-domain states. Three types of polarization instabilities are revealed for polydomain epitaxial ferroelectric films, which may lead to the formation of new polydomain states forbidden in bulk crystals. The total dielectric and piezoelectric small-signal responses of polydomain films are calculated, resulting from both the volume and domain-wall contributions. For BaTiO3 films, strong dielectric anomalies are predicted at room temperature near special values of the misfit strain.Comment: 19 pages, 8 figure

    Nonisothermal relaxation in a nonlocal medium

    Get PDF
    A study is made of the thermodynamics of a non-local medium whose evolution is governed not only by the temperature and pressure, but also by the field of a relaxation parameter. For solid-state materials which undergo a phase transition, such a relaxation parameter is the order parameter. Heat transport equations are derived together with a thermodynamic inequality which must be satisfied during relaxation. The motion of an interphase boundary during a first-order phase transition is investigated. It is shown that, if the width of the boundary exceeds a critical value, there are steady-state conditions under which the new phase formed in an exothermal transition may be at a temperature above the equilibrium temperature

    Modeling of martensitic transformation in adaptive composites

    No full text
    The formation of elastic domains in transforming constrained films is a mechanism of relaxation of internal stresses caused by the misfit between a film and a substrate. The formation and evolution of polydomain microstructure as a result of the cubic-tetragonal transformation in a constrained layer are investigated by phasefield simulation. It has been shown that the three-domain hierarchical structure can be formed in the epitaxial films. With changing a fraction of out-of-plane domain there are two types of morphological transitions: from the three-domain structure to the two-domain one and from the hierarchical three-domain structure to the cellular three-domain structure. The results of the phase-field simulation are compared with available experimental data
    corecore