209 research outputs found
From coupled elementary units to the complexity of the glass transition
Supercooled liquids display fascinating properties upon cooling such as the
emergence of dynamic length scales. Different models strongly vary with respect
to the choice of the elementary subsystems (CRR) as well as their mutual
coupling. Here we show via computer simulations of a glass former that both
ingredients can be identified via analysis of finite-size effects within the
continuous-time random walk framework. The CRR already contain complete
information about thermodynamics and diffusivity whereas the coupling
determines structural relaxation and the emergence of dynamic length scales
Ac transport studies in polymers by a resistor network and transfer matrix approaches: application to polyaniline
A statistical model of resistor network is proposed to describe a polymer
structure and to simulate the real and imaginary components of its ac
resistivity. It takes into account the polydispersiveness of the material as
well as intrachain and interchain charge transport processes. By the
application of a transfer matrix technique, it reproduces ac resistivity
measurements carried out with polyaniline films in different doping degrees and
at different temperatures. Our results indicate that interchain processes
govern the resistivity behavior in the low frequency region while, for higher
frequencies, intrachain mechanisms are dominant.Comment: LaTeX file, 15 pages, 5 ps figures, to appear in Phys. Rev.
Spectral and spatial shaping of laser-driven proton beams using a pulsed high-field magnet beamline
Intense laser-driven proton pulses, inherently broadband and highly
divergent, pose a challenge to established beamline concepts on the path to
application-adapted irradiation field formation, particularly for 3D. Here we
experimentally show the successful implementation of a highly efficient (50%
transmission) and tuneable dual pulsed solenoid setup to generate a homogeneous
(8.5% uniformity laterally and in depth) volumetric dose distribution
(cylindrical volume of 5 mm diameter and depth) at a single pulse dose of 0.7
Gy via multi-energy slice selection from the broad input spectrum. The
experiments have been conducted at the Petawatt beam of the Dresden Laser
Acceleration Source Draco and were aided by a predictive simulation model
verified by proton transport studies. With the characterised beamline we
investigated manipulation and matching of lateral and depth dose profiles to
various desired applications and targets. Using a specifically adapted dose
profile, we successfully performed first proof-of-concept laser-driven proton
irradiation studies of volumetric in-vivo normal tissue (zebrafish embryos) and
in-vitro tumour tissue (SAS spheroids) samples.Comment: Submitted to Scientific Report
Recommended from our members
Enhanced ion acceleration from transparency-driven foils demonstrated at two ultraintense laser facilities
Laser-driven ion sources are a rapidly developing technology producing high energy, high peak current beams. Their suitability for applications, such as compact medical accelerators, motivates development of robust acceleration schemes using widely available repetitive ultraintense femtosecond lasers. These applications not only require high beam energy, but also place demanding requirements on the source stability and controllability. This can be seriously affected by the laser temporal contrast, precluding the replication of ion acceleration performance on independent laser systems with otherwise similar parameters. Here, we present the experimental generation of >60 MeV protons and >30 MeV u-1 carbon ions from sub-micrometre thickness Formvar foils irradiated with laser intensities >1021 Wcm2. Ions are accelerated by an extreme localised space charge field ≳30 TVm-1, over a million times higher than used in conventional accelerators. The field is formed by a rapid expulsion of electrons from the target bulk due to relativistically induced transparency, in which relativistic corrections to the refractive index enables laser transmission through normally opaque plasma. We replicate the mechanism on two different laser facilities and show that the optimum target thickness decreases with improved laser contrast due to reduced pre-expansion. Our demonstration that energetic ions can be accelerated by this mechanism at different contrast levels relaxes laser requirements and indicates interaction parameters for realising application-specific beam delivery
Is Aid for Trade Effective? A Quantile Regression Approach
This paper investigates whether Aid for Trade (AfT) improves export performance, i.e. does AfT lead to greater exports? Using panel data and panel quantile regression, our results suggest that overall AfT disbursements promote the export of goods and services mainly for the .50 and .75 quantiles. Our results also show that for some types of AfT this effect essentially vanishes at the lower tail of the conditional distribution of exports. Hence, countries that export more in volume are those benefiting most from AfT. We also investigate which types of AfT are effective. In particular, we find that aid used to build production capacity is effective. This type of aid is associated with higher exports for almost all quantiles, with the effect increasing at the upper tail of the conditional distribution. Aid used to build infrastructure is also found to affect exports at the upper tail of the distribution. In contrast, aid for trade policy and aid disbursed for general budget support (an untargeted type of aid) are not associated with greater export levels. This finding holds true irrespective of the quantile
Combined magnetic resonance coronary artery imaging, myocardial perfusion and late gadolinium enhancement in patients with suspected coronary artery disease
<p>Abstract</p> <p>Background</p> <p>Cardiovascular Magnetic Resonance (CMR) imaging offers methods for the detection of ischemia and myocardial infarction as well as visualization of the coronary arteries (MRCA). However, a direct comparison of adenosine perfusion (PERF), late gadolinium enhancement (LGE) and MRCA or the results of their combination has not been performed. Aim of the study was to evaluate the feasibility/diagnostic performance of rest/stress perfusion, late gadolinium enhancement and MRCA and their combination in patients with suspected coronary artery disease (CAD) in comparison to invasive angiography.</p> <p>Methods</p> <p>Fifty-four patients (60 ± 10 years, 35 men, CAD 48%) underwent CMR including MRCA (steady state free precession, navigator whole heart approach, spatial resolution 0.7 × 0.7 × .0.9 mm, trigger delay and temporal resolution adjusted individually), stress PERF (adenosine 140 μg/min/kg), rest PERF (SSFP, 3 short axis, 1 saturation prepulse per slice) and LGE (3D inversion recovery technique) using Gd-BOPTA. Images were analyzed visually. Stenosis >50% in invasive angiography was considered significant.</p> <p>Results</p> <p>Mean study time was 68 ± 11 minutes. Sensitivity for PERF, LGE, MRCA and the combination of PERF/LGE and PERF/LGE/MRCA was 87%, 50%, 91%, 88% and 92%, respectively and specificity 88%, 96%, 46%, 88% and 56%, respectively. If image quality of MRCA was excellent (n = 18) the combination of MRCA/PERF/LGE yield a sensitivity of 86% and specificity of 91%. However, no test or combination improved diagnostic performance significantly compared to PERF alone.</p> <p>Conclusion</p> <p>In patients with CAD, the combination of stress PERF, LGE and MRCA is feasible. When compared to invasive angiography, adenosine stress perfusion outperforms CMR coronary angiography in direct comparison and yields the best results with non-significant improvement in combination with LGE and significant deterioration in combination with MRCA. MRCA may be of additional value only in a minority of patients with excellent image quality.</p
- …