3,680 research outputs found

    Quantum Topological Excitations: from the Sawtooth Lattice to the Heisenberg Chain

    Full text link
    The recently elucidated structure of the delafossite YCuO2.5_{2.5} reveals a Cu-O network with nearly independent Δ\Delta chains having different interactions between the s=1/2s=1/2 spins. Motivated by this result, we study the Δ\Delta chain for various ratios Jbb/JbvJ_{\rm bb}/J_{\rm bv} of the base-base and base-vertex interactions. By exact diagonalization and extrapolation, we show that the elementary excitation spectrum, which (within numerical error) is the same for total spins Stot=0S_{\rm tot}=0 and 1, has a gap only in the interval 0.4874(1)≀Jbb/Jbv≀1.53(1)0.4874(1) \leq J_{\rm bb}/J_{\rm bv} \leq 1.53(1). The gap is dispersionless for Jbb/Jbv=1J_{\rm bb}/J_{\rm bv}=1, but has increasing kk-dependence as Jbb/JbvJ_{\rm bb}/J_{\rm bv} moves away from unity, related to the instability of dimers in the ground state.Comment: 4 pages, 6 figures (revtex twocolumn

    Electronic structure and Fermi surface tolopogy of Nax_xCoO2_2

    Full text link
    We construct an effective Hamiltonian for the motion of T2g highly correlated states in NaxCoO2. We solve exactly a multiband model in a CoO6 cluster with electronic occupation corresponding to a nominal Co valence of either +3 or +4. Using the ensuing ground states, we calculate the effective O mediated hopping t=0.10 eV between many-body T2g states, and estimate the direct hopping t'~0.04 eV. The trigonal splitting 3D=0.315 eV is taken from recent quantum chemistry calculations. The resulting effective Hamiltonian is solved using a generalized slave-boson mean-field approximation. The results show a significant band renormalization and a Fermi surface topology that agrees with experiment, in contrast to predictions using the local-density approximation.Comment: 4 pages, 2 figure

    Pressure effects in PrT2B2C (T = Co, Ni, Pt): Applied and chemical pressure

    Full text link
    High-pressure electrical resistivity, r(T), measurements on intermetallic Pr(Co, Ni, Pt)2B2C compounds were performed down to 2K. At room pressure the r(T) in a-b direction curves for the non superconducting Pr(Co, Ni)2B2C compounds exhibit magnetic correlations at about 10 and 4 K, respectively. At low temperatures, PrCo2B2C shows a large spin-dependent electron scattering in comparison to PrNi2B2C. Under applied pressure the magnetic scattering tends to be suppressed more effectively in PrCo2B2C than in PrNi2 B2C. The low temperature behavior of r(T,P) for PrNi2B2C and PrCo2B2C suggests a spin fluctuations mechanism. In the other hand PrPt2B2C compound shows superconductivity at about 6 K and under pressure its superconducting transition temperature tends to be degraded at a rate dTc/dP = -0.34 K/GPa, as expected in compounds with transition metals. The experimental results in Co, Ni and Pt based compounds are analyzed from the point of view of the external and chemical internal pressure effects

    High pressure effects in fluorinated HgBa2Ca2Cu3O(8+d)

    Get PDF
    We have measured the pressure sensitivity of Tc in fluorinated HgBa2Ca2Cu3O(8+d) (Hg-1223) ceramic samples with different F contents, applying pressures up to 30 GPa. We obtained that Tc increases with increasing pressure, reaching different maximum values, depending on the F doping level, and decreases for a further increase of pressure. A new high Tc record (166 K +/- 1 K) was achieved by applying pressure (23 GPa) in a fluorinated Hg-1223 sample near the optimum doping level. Our results show that all our samples are at the optimal doping, and that fluorine incorporation decreases the crystallographic aa-parameter concomitantly increasing the maximum attainable Tc. This effect reveals that the compression of the aa axes is one of the keys that controls the Tc of high temperature superconductors.Comment: 4 pages, 4 figures, submitted to Phys. Rev.

    On finite strain micromorphic elastoplasticity

    Get PDF
    AbstractIn the micromorphic continuum theory of Eringen, it was proposed that microstructure of materials could be represented in a continuum framework using a micro-deformation tensor governing micro-element deformation, in addition to the deformation gradient governing macro-element deformation. The paper formulates finite strain micromorphic elastoplasticity based on micromorphic continuum mechanics in the sense of Eringen. Multiplicative decomposition into elastic and plastic parts of the deformation gradient and micro-deformation are assumed, and the Clausius–Duhem inequality is formulated in the intermediate configuration B¯ to analyze what stresses, elastic deformation measures, and plastic deformation rates are used/defined in the constitutive equations. The resulting forms of plastic and internal state variable evolution equations can be viewed as phenomenological at their various scales (i.e., micro-continuum and macro-continuum). The phenomenology of inelastic mechanical material response at the various scales can be different, but for demonstration purposes, J2 flow plasticity is assumed for each of three levels of plastic evolution equations identified, with different stress, internal state variables, and material parameters. All evolution equations and a semi-implicit time integration scheme are formulated in the intermediate configuration for future coupled Lagrangian finite element implementation. A simpler two-dimensional model for anti-plane shear kinematics is formulated to demonstrate more clearly how such model equations simplify for future finite element implementation

    Electrical resistivity of the Ti4O7 Magneli phase under high pressure

    Full text link
    We have measured resistivity as a function of temperature and pressure of Ti4O7 twinned crystals using different contact configurations. Pressures over 4kbar depress the localization of bipolarons and allow the study of the electrical conduction of the bipolaronic phase down to low temperatures. For pressures P > 40 kbar the bipolaron formation transition is suppressed and a nearly pressure independent behavior is obtained for the resistivity. We observed an anisotropic conduction. When current is injected parallel to the principal axis, a metallic conduction with interacting carrier effects is predominant. A superconducting state was not obtained down to 1.2 K, although evidences of the proximity of a quantum critical point were noticed. While when current is injected non-parallel to the crystal's principal axis, we obtained a logarithmic divergence of the resistivity at low temperatures. For this case, our results for the high pressure regime can be interpreted in the framework of interacting carriers (polarons or bipolarons) scattered by Two Level Systems.Comment: 9 Revtex pages, 12 EPS figures included, submitted to The European Physical Journal B. Contact author: C. Acha (e-mail address: [email protected]

    Absence of a structural transition up to 40 Gpa in MgB2 and the relevance of magnesium non-stoichiometry

    Full text link
    We report measurements on MgB2 up to ~40GPa. Increasing pressure yields a monotonous decrease of the lattice parameters and of the c/a ratio, but no structural transition down to parameters smaller than those of AlB2. The transition superconducting temperature also decreases with temperature in a sample dependent way. The results are explained by an increase of the filling of the 2D pxy bands with pressure, the Mg stoichiometry determining the starting position of the Fermi level. Our measurements indicate that these hole bands are the relevant ones for superconductivity.Comment: submitted March 9th 2001, PRB accepte

    Direct observation of the influence of the As-Fe-As angle on the Tc of superconducting SmFeAsO1−x_{1-x}Fx_{x}

    Get PDF
    The electrical resistivity, crystalline structure and electronic properties calculated from the experimentally measured atomic positions of the compound SmFeAsO0.81_{0.81}F0.19_{0.19} have been studied up to pressures ~20GPa. The correlation between the pressure dependence of the superconducting transition temperature (Tc) and crystallographic parameters on the same sample shows clearly that a regular FeAs4_{4} tetrahedron maximizes Tc, through optimization of carrier transfer to the FeAs planes as indicated by the evolution of the electronic band structures.Comment: 15pages, 4 figure
    • 

    corecore