89 research outputs found
Collecting Channel State Information in Wi-Fi Access Points for IoT Forensics
The Internet of Things (IoT) has boomed in recent years, with an ever-growing number of connected devices and a corresponding exponential increase in network traffic. As a result, IoT devices have become potential witnesses of the surrounding environment and people living in it, creating a vast new source of forensic evidence. To address this need, a new field called IoT Forensics has emerged. In this paper, we present CSI Sniffer, a tool that integrates the collection and management of Channel State Information (CSI) in WiFi Access Points. CSI is a physical layer indicator that enables human sensing, including occupancy monitoring and activity recognition. After a description of the tool architecture and implementation, we demonstrate its capabilities through two application scenarios that use binary classification techniques to classify user behavior based on CSI features extracted from IoT traffic. Our results show that the proposed tool can enhance the capabilities of forensic investigations by providing additional sources of evidence. Wi-Fi Access Points integrated with CSI Sniffer can be used by ISP or network managers to facilitate the collection of information from IoT devices and the surrounding environment. We conclude the work by analyzing the storage requirements of CSI sample collection and discussing the impact of lossy compression techniques on classification performance
Bamboo: A fast descriptor based on AsymMetric pairwise BOOsting
A robust hash, or content-based fingerprint, is a succinct representation of the perceptually most relevant parts of a multimedia object. A key requirement of fingerprinting is that elements with perceptually similar content should map to the same fingerprint, even if their bit-level representations are different. In this work we propose BAMBOO (Binary descriptor based on AsymMetric pairwise BOOsting), a binary local descriptor that exploits a combination of content-based fingerprinting techniques and computationally efficient filters (box filters, Haar-like features, etc.) applied to image patches. In particular, we define a possibly large set of filters and iteratively select the most discriminative ones resorting to an asymmetric pair-wise boosting technique. The output values of the filtering process are quantized to one bit, leading to a very compact binary descriptor. Results show that such descriptor leads to compelling results, significantly outperforming binary descriptors having comparable complexity (e.g., BRISK), and approaching the discriminative power of state-of-the-art descriptors which are significantly more complex (e.g., SIFT and BinBoost)
Compress-then-analyze vs. analyze-then-compress: Two paradigms for image analysis in visual sensor networks
We compare two paradigms for image analysis in vi- sual sensor networks (VSN). In the compress-then-analyze (CTA) paradigm, images acquired from camera nodes are compressed and sent to a central controller for further analysis. Conversely, in the analyze-then-compress (ATC) approach, camera nodes perform visual feature extraction and transmit a compressed version of these features to a central controller. We focus on state-of-the-art binary features which are particularly suitable for resource-constrained VSNs, and we show that the ”winning” paradigm depends primarily on the network conditions. Indeed, while the ATC approach might be the only possible way to perform analysis at low available bitrates, the CTA approach reaches the best results when the available bandwidth enables the transmission of high-quality images
A visual sensor network for object recognition: Testbed realization
This work describes the implementation of an object recognition service on top of energy and resource-constrained hardware. A complete pipeline for object recognition based on the BRISK visual features is implemented on Intel Imote2 sensor devices. The reference implementation is used to assess the performance of the object recognition pipeline in terms of processing time and recognition accuracy
Coding binary local features extracted from video sequences
Local features represent a powerful tool which is exploited in several applications such as visual search, object recognition and tracking, etc. In this context, binary descriptors provide an efficient alternative to real-valued descriptors, due to low computational complexity, limited memory footprint and fast matching algorithms. The descriptor consists of a binary vector, in which each bit is the result of a pairwise comparison between smoothed pixel intensities. In several cases, visual features need to be transmitted over a bandwidth-limited network. To this end, it is useful to compress the descriptor to reduce the required rate, while attaining a target accuracy for the task at hand. The past literature thoroughly addressed the problem of coding visual features extracted from still images and, only very recently, the problem of coding real-valued features (e.g., SIFT, SURF) extracted from video sequences. In this paper we propose a coding architecture specifically designed for binary local features extracted from video content. We exploit both spatial and temporal redundancy by means of intra-frame and inter-frame coding modes, showing that significant coding gains can be attained for a target level of accuracy of the visual analysis task
Energy consumption of visual sensor networks: impact of spatio-temporal coverage
Wireless visual sensor networks (VSNs) are expected to play a major role in future IEEE 802.15.4 personal area networks (PANs) under recently established collision-free medium access control (MAC) protocols, such as the IEEE 802.15.4e-2012 MAC. In such environments, the VSN energy consumption is affected by a number of camera sensors deployed (spatial coverage), as well as a number of captured video frames of which each node processes and transmits data (temporal coverage). In this paper we explore this aspect for uniformly formed VSNs, that is, networks comprising identical wireless visual sensor nodes connected to a collection node via a balanced cluster-tree topology, with each node producing independent identically distributed bitstream sizes after processing the video frames captured within each network activation interval. We derive analytic results for the energy-optimal spatiooral coverage parameters of such VSNs under a priori known bounds for the number of frames to process per sensor and the number of nodes to deploy within each tier of the VSN. Our results are parametric to the probability density function characterizing the bitstream size produced by each node and the energy consumption rates of the system of interest. Experimental results are derived from a deployment of TelosB motes and reveal that our analytic results are always within 7%of the energy consumption measurements for a wide range of settings. In addition, results obtained via motion JPEG encoding and feature extraction on a multimedia subsystem (BeagleBone Linux Computer) show that the optimal spatiooral settings derived by our framework allow for substantial reduction of energy consumption in comparison with ad hoc settings
Energy-aware dynamic resource allocation in virtual sensor networks
Sensor network virtualization enables the possibility of sharing common physical resources to multiple stakeholder applications. This paper focuses on addressing the dynamic adaptation of already assigned virtual sensor network resources to respond to time varying application demands. We propose an optimization framework that dynamically allocate applications into sensor nodes while accounting for the characteristics and limitations of the wireless sensor environment. It takes also into account the additional energy consumption related to activating new nodes and/or moving already active applications. Different objective functions related to the available energy in the nodes are analyzed. The proposed framework is evaluated by simulation considering realistic parameters from actual sensor nodes and deployed applications to assess the efficiency of the proposals
- …