737 research outputs found

    L'CO/LFIR Relations with CO Rotational Ladders of Galaxies Across the Herschel SPIRE Archive

    Full text link
    We present a catalog of all CO (J=4-3 through J=13-12)), [CI], [NII] lines available from extragalactic spectra from the Herschel SPIRE Fourier Transform Spectrometer (FTS) archive combined with observations of the low-J CO lines from the literature and from the Arizona Radio Observatory. This work examines the relationships between LFIR, L'CO, and LCO/LCO(1-0). We also present a new method for estimating probability distribution functions (PDFs) from marginal signal-to-noise ratio Herschel} FTS spectra, which takes into account the instrumental "ringing" and the resulting highly correlated nature of the spectra. The slopes of log(LFIR) vs. log(L'CO) are linear for all mid- to high-J CO lines and slightly sublinear if restricted to (U)LIRGs. The mid- to high-J CO luminosity relative to CO J=1-0 increases with increasing LFIR, indicating higher excitement of the molecular gas, though these ratios do not exceed ~ 180. For a given bin in LFIR, the luminosities relative to CO J=1-0 remain relatively flat from J=6-5 through J=13-12, across three orders of magnitude of LFIR. A single component theoretical photon-dominated region (PDR) model cannot match these flat SLED shapes, though combinations of PDR models with mechanical heating added qualitatively match the shapes, indicating the need for further comprehensive modeling of the excitation processes of warm molecular gas in nearby galaxies.Comment: 17 pages, 4 figures (including appendix), accepted by ApJ. Full tables will be in VizieR upon publication, email first author for tables in the meantim

    Continuous loading of an electrostatic trap for polar molecules

    Full text link
    A continuously operated electrostatic trap for polar molecules is demonstrated. The trap has a volume of ~0.6 cm^3 and holds molecules with a positive Stark shift. With deuterated ammonia from a quadrupole velocity filter, a trap density of ~10^8/cm^3 is achieved with an average lifetime of 130 ms and a motional temperature of ~300 mK. The trap offers good starting conditions for high-precision measurements, and can be used as a first stage in cooling schemes for molecules and as a "reaction vessel" in cold chemistry.Comment: 4 pages, 3 figures v2: several small improvements, new intr

    Trapping of Neutral Rubidium with a Macroscopic Three-Phase Electric Trap

    Full text link
    We trap neutral ground-state rubidium atoms in a macroscopic trap based on purely electric fields. For this, three electrostatic field configurations are alternated in a periodic manner. The rubidium is precooled in a magneto-optical trap, transferred into a magnetic trap and then translated into the electric trap. The electric trap consists of six rod-shaped electrodes in cubic arrangement, giving ample optical access. Up to 10^5 atoms have been trapped with an initial temperature of around 20 microkelvin in the three-phase electric trap. The observations are in good agreement with detailed numerical simulations.Comment: 4 pages, 4 figure

    A Three Dimensional Lattice of Ion Traps

    Full text link
    We propose an ion trap configuration such that individual traps can be stacked together in a three dimensional simple cubic arrangement. The isolated trap as well as the extended array of ion traps are characterized for different locations in the lattice, illustrating the robustness of the lattice of traps concept. Ease in the addressing of ions at each lattice site, individually or simultaneously, makes this system naturally suitable for a number of experiments. Application of this trap to precision spectroscopy, quantum information processing and the study of few particle interacting system are discussed.Comment: 4 pages, 4 Figures. Fig 1 appears as a composite of 1a, 1b, 1c and 1d. Fig 2 appears as a composite of 2a, 2b and 2
    corecore