14 research outputs found

    Transition from a simple yield stress fluid to a thixotropic material

    Get PDF
    From MRI rheometry we show that a pure emulsion can be turned from a simple yield stress fluid to a thixotropic material by adding a small fraction of colloidal particles. The two fluids have the same behavior in the liquid regime but the loaded emulsion exhibits a critical shear rate below which no steady flows can be observed. For a stress below the yield stress, the pure emulsion abruptly stops flowing, whereas the viscosity of the loaded emulsion continuously increases in time, which leads to an apparent flow stoppage. This phenomenon can be very well represented by a model assuming a progressive increase of the number of droplet links via colloidal particles.Comment: Published in Physical Review E. http://pre.aps.org/abstract/PRE/v76/i5/e05140

    Wide-gap Couette flows of dense emulsions: Local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging

    Get PDF
    Flows of dense emulsions show many complex features among which long range nonlocal effects pose a problem for macroscopic characterization. In order to get around this problem, we study the flows of several dense emulsions in a wide-gap Couette geometry. We couple macroscopic rheometric experiments and local velocity measurements through MRI techniques. As concentration heterogeneities can be expected, we designed a method to measure the local droplet concentration in emulsions with a MRI device. In contrast to dense suspensions of rigid particles where very fast migration occurs under shear, we show that no migration takes place in dense emulsions even for strains as large as 100 000 in our systems. As a result of the absence of migration and of finite size effect, we are able to determine very precisely the local rheological behavior of several dense emulsions. As the materials are homogeneous, this behavior can also be inferred from purely macroscopic measurements. We thus suggest that properly analyzed purely macroscopic measurements in a wide-gap Couette geometry can be used as a tool to study the local constitutive laws of dense emulsions. All behaviors are basically consistent with Herschel-Bulkley laws of index 0.5, but discrepancies exist at the approach of the yield stress due to slow shear flows below the apparent yield stress in the case of a strongly adhesive emulsion. The existence of a constitutive law accounting for all flows contrasts with previous results obtained within a microchannel by Goyon et al. (2008): the use of a wide-gap Couette geometry is likely to prevent here from nonlocal finite size effects; it also contrasts with the observations of B\'ecu et al. (2006)

    Phenomenology and physical origin of shear-localization and shear-banding in complex fluids

    Get PDF
    We review and compare the phenomenological aspects and physical origin of shear-localization and shear-banding in various material types, namely emulsions, suspensions, colloids, granular materials and micellar systems. It appears that shear-banding, which must be distinguished from the simple effect of coexisting static-flowing regions in yield stress fluids, occurs in the form of a progressive evolution of the local viscosity towards two significantly different values in two adjoining regions of the fluids in which the stress takes slightly different values. This suggests that from a global point of view shear-banding in these systems has a common physical origin: two physical phenomena (for example, in colloids, destructuration due to flow and restructuration due to aging) are in competition and, depending on the flow conditions, one of them becomes dominant and makes the system evolve in a specific direction.Comment: The original publication is available at http://www.springerlink.co

    Recent experimental probes of shear banding

    Get PDF
    Recent experimental techniques used to investigate shear banding are reviewed. After recalling the rheological signature of shear-banded flows, we summarize the various tools for measuring locally the microstructure and the velocity field under shear. Local velocity measurements using dynamic light scattering and ultrasound are emphasized. A few results are extracted from current works to illustrate open questions and directions for future research.Comment: Review paper, 23 pages, 11 figures, 204 reference
    corecore