153 research outputs found

    Hierarchical Event Descriptors (HED): Semi-Structured Tagging for Real-World Events in Large-Scale EEG.

    Get PDF
    Real-world brain imaging by EEG requires accurate annotation of complex subject-environment interactions in event-rich tasks and paradigms. This paper describes the evolution of the Hierarchical Event Descriptor (HED) system for systematically describing both laboratory and real-world events. HED version 2, first described here, provides the semantic capability of describing a variety of subject and environmental states. HED descriptions can include stimulus presentation events on screen or in virtual worlds, experimental or spontaneous events occurring in the real world environment, and events experienced via one or multiple sensory modalities. Furthermore, HED 2 can distinguish between the mere presence of an object and its actual (or putative) perception by a subject. Although the HED framework has implicit ontological and linked data representations, the user-interface for HED annotation is more intuitive than traditional ontological annotation. We believe that hiding the formal representations allows for a more user-friendly interface, making consistent, detailed tagging of experimental, and real-world events possible for research users. HED is extensible while retaining the advantages of having an enforced common core vocabulary. We have developed a collection of tools to support HED tag assignment and validation; these are available at hedtags.org. A plug-in for EEGLAB (sccn.ucsd.edu/eeglab), CTAGGER, is also available to speed the process of tagging existing studies

    Epigenetic and phenotypic variability in populaitons of Schistosoma mansoni - a possible kick-off for adaptative host/parasite evolution

    Get PDF
    International audienceEpigenetics, the science of heritable but modifiable information, is now a well-accepted component of many research fields. Nevertheless, epigenetics has not yet found broad appreciation in one of the most exciting fields of biology: the comprehension of evolution. This is surprising, since the reason for the existence of this alternative information-transmitting system lies certainly in the evolutionary advantage it provides. Theoretical considerations support a model in which epigenetic mechanisms allow for increasing phenotypic variability and permit populations to explore the adaptive landscape without modifications of the genotype. The data presented here support the view that modulating the epigenotype of the human bloodfluke Schistosoma mansoni by treatment of larvae with histone deacetylase inhibitor leads indeed to an increase of phenotypic variability. It is therefore conceivable that environmentally induced changes in the epigenotype release new phenotypes on which selection can act and that this process is the first step in adaptive evolution

    Inference of breed structure in farm animals: Empirical comparison between snp and microsatellite performance

    Get PDF
    Knowledge of population structure is essential to improve the management and conservation of farm animal genetic resources. Microsatellites, which have long been popular for this type of analysis, are more and more neglected in favor of whole-genome single nucleotide polymorphism (SNP) chips that are now available for the main farmed animal species. In this study, we compared genetic patterns derived from microsatellites to that inferred by SNPs, considering three pairs of datasets of sheep and cattle. Population genetic differentiation analyses (Fixation index, FST ), as well as STRUCTURE analyses showed a very strong consistency between the two types of markers. Microsatellites gave pictures that were largely concordant with SNPs, although less accurate. The best concordance was found in the most complex dataset, which included 17 French sheep breeds (with a Pearson correlation coefficient of 0.95 considering the 136 values of pairwise FST, obtained with both types of markers). The use of microsatellites reduces the cost and the related analyses do not require specific computer equipment (i.e., information technology (IT) infrastructure able to provide adequate computing and storage capacity). Therefore, this tool may still be a very appropriate solution to evaluate, in a first stage, the general state of livestock at national scales. At a time when local breeds are disappearing at an alarming rate, it is urgent to improve our knowledge of them, in particular by promoting tools accessible to the greatest number

    The Influence of the Degree of Heterogeneity on the Elastic Properties of Random Sphere Packings

    Full text link
    The macroscopic mechanical properties of colloidal particle gels strongly depend on the local arrangement of the powder particles. Experiments have shown that more heterogeneous microstructures exhibit up to one order of magnitude higher elastic properties than their more homogeneous counterparts at equal volume fraction. In this paper, packings of spherical particles are used as model structures to computationally investigate the elastic properties of coagulated particle gels as a function of their degree of heterogeneity. The discrete element model comprises a linear elastic contact law, particle bonding and damping. The simulation parameters were calibrated using a homogeneous and a heterogeneous microstructure originating from earlier Brownian dynamics simulations. A systematic study of the elastic properties as a function of the degree of heterogeneity was performed using two sets of microstructures obtained from Brownian dynamics simulation and from the void expansion method. Both sets cover a broad and to a large extent overlapping range of degrees of heterogeneity. The simulations have shown that the elastic properties as a function of the degree of heterogeneity are independent of the structure generation algorithm and that the relation between the shear modulus and the degree of heterogeneity can be well described by a power law. This suggests the presence of a critical degree of heterogeneity and, therefore, a phase transition between a phase with finite and one with zero elastic properties.Comment: 8 pages, 6 figures; Granular Matter (published online: 11. February 2012

    Rheophysics of dense granular materials : Discrete simulation of plane shear flows

    Full text link
    We study the steady plane shear flow of a dense assembly of frictional, inelastic disks using discrete simulation and prescribing the pressure and the shear rate. We show that, in the limit of rigid grains, the shear state is determined by a single dimensionless number, called inertial number I, which describes the ratio of inertial to pressure forces. Small values of I correspond to the quasi-static regime of soil mechanics, while large values of I correspond to the collisional regime of the kinetic theory. Those shear states are homogeneous, and become intermittent in the quasi-static regime. When I increases in the intermediate regime, we measure an approximately linear decrease of the solid fraction from the maximum packing value, and an approximately linear increase of the effective friction coefficient from the static internal friction value. From those dilatancy and friction laws, we deduce the constitutive law for dense granular flows, with a plastic Coulomb term and a viscous Bagnold term. We also show that the relative velocity fluctuations follow a scaling law as a function of I. The mechanical characteristics of the grains (restitution, friction and elasticity) have a very small influence in this intermediate regime. Then, we explain how the friction law is related to the angular distribution of contact forces, and why the local frictional forces have a small contribution to the macroscopic friction. At the end, as an example of heterogeneous stress distribution, we describe the shear localization when gravity is added.Comment: 24 pages, 19 figure
    • …
    corecore