94 research outputs found

    Symplectically harmonic cohomology of nilmanifolds

    Full text link
    This paper can be considered as an extension to our paper [On symplectically harmonic forms on six-dimensional nilmanifolds, Comment. Math. Helv. 76 (2001), n 1, 89-109]. Also, it contains a brief survey of recent results on symplectically harmonic cohomology.Comment: 18 page

    Using mixed data in the inverse scattering problem

    Full text link
    Consider the fixed-ℓ\ell inverse scattering problem. We show that the zeros of the regular solution of the Schr\"odinger equation, rn(E)r_{n}(E), which are monotonic functions of the energy, determine a unique potential when the domain of the energy is such that the rn(E)r_{n}(E) range from zero to infinity. This suggests that the use of the mixed data of phase-shifts {δ(ℓ0,k),k≥k0}∪{δ(ℓ,k0),ℓ≥ℓ0}\{\delta(\ell_0,k), k \geq k_0 \} \cup \{\delta(\ell,k_0), \ell \geq \ell_0 \}, for which the zeros of the regular solution are monotonic in both domains, and range from zero to infinity, offers the possibility of determining the potential in a unique way.Comment: 9 pages, 2 figures. Talk given at the Conference of Inverse Quantum Scattering Theory, Hungary, August 200

    Grothendieck groups and a categorification of additive invariants

    Full text link
    A topologically-invariant and additive homology class is mostly not a natural transformation as it is. In this paper we discuss turning such a homology class into a natural transformation; i.e., a "categorification" of it. In a general categorical set-up we introduce a generalized relative Grothendieck group from a cospan of functors of categories and also consider a categorification of additive invariants on objects. As an example, we obtain a general theory of characteristic homology classes of singular varieties.Comment: 27 pages, to appear in International J. Mathematic

    Massey products in symplectic manifolds

    Full text link
    The paper is devoted to study of Massey products in symplectic manifolds. Theory of generalized and classical Massey products and a general construction of symplectic manifolds with nontrivial Massey products of arbitrary large order are exposed. The construction uses the symplectic blow-up and is based on the author results, which describe conditions under which the blow-up of a symplectic manifold X along its submanifold Y inherits nontrivial Massey products from X ot Y. This gives a general construction of nonformal symplectic manifolds.Comment: LaTeX, 48 pages, 2 figure

    Linking and causality in globally hyperbolic spacetimes

    Full text link
    The linking number lklk is defined if link components are zero homologous. Our affine linking invariant alkalk generalizes lklk to the case of linked submanifolds with arbitrary homology classes. We apply alkalk to the study of causality in Lorentz manifolds. Let MmM^m be a spacelike Cauchy surface in a globally hyperbolic spacetime (Xm+1,g)(X^{m+1}, g). The spherical cotangent bundle ST∗MST^*M is identified with the space NN of all null geodesics in (X,g).(X,g). Hence the set of null geodesics passing through a point x∈Xx\in X gives an embedded (m−1)(m-1)-sphere SxS_x in N=ST∗MN=ST^*M called the sky of x.x. Low observed that if the link (Sx,Sy)(S_x, S_y) is nontrivial, then x,y∈Xx,y\in X are causally related. This motivated the problem (communicated by Penrose) on the Arnold's 1998 problem list to apply link theory to the study of causality. The spheres SxS_x are isotopic to fibers of (ST∗M)2m−1→Mm.(ST^*M)^{2m-1}\to M^m. They are nonzero homologous and lk(Sx,Sy)lk(S_x,S_y) is undefined when MM is closed, while alk(Sx,Sy)alk(S_x, S_y) is well defined. Moreover, alk(Sx,Sy)∈Zalk(S_x, S_y)\in Z if MM is not an odd-dimensional rational homology sphere. We give a formula for the increment of \alk under passages through Arnold dangerous tangencies. If (X,g)(X,g) is such that alkalk takes values in Z\Z and gg is conformal to g′g' having all the timelike sectional curvatures nonnegative, then x,y∈Xx, y\in X are causally related if and only if alk(Sx,Sy)≠0alk(S_x,S_y)\neq 0. We show that x,yx,y in nonrefocussing (X,g)(X, g) are causally unrelated iff (Sx,Sy)(S_x, S_y) can be deformed to a pair of Sm−1S^{m-1}-fibers of ST∗M→MST^*M\to M by an isotopy through skies. Low showed that if (\ss, g) is refocussing, then MM is compact. We show that the universal cover of MM is also compact.Comment: We added: Theorem 11.5 saying that a Cauchy surface in a refocussing space time has finite pi_1; changed Theorem 7.5 to be in terms of conformal classes of Lorentz metrics and did a few more changes. 45 pages, 3 figures. A part of the paper (several results of sections 4,5,6,9,10) is an extension and development of our work math.GT/0207219 in the context of Lorentzian geometry. The results of sections 7,8,11,12 and Appendix B are ne

    Exotic smooth structures and symplectic forms on closed manifolds

    Full text link
    We give a short proof of the (known) result that there are no Kaehler structures on exotic tori. This yields a negative solution to a problem posed by Benson and Gordon. W discuss the symplectic version of the problem and analyze results which yield an evidence for the conjecture that there are no symplectic structures on exotic tori.Comment: AMSLaTeX, 16 pages, a new version. A survey of the symplectic version of the problem is adde

    Hysteresis, Avalanches, and Disorder Induced Critical Scaling: A Renormalization Group Approach

    Full text link
    We study the zero temperature random field Ising model as a model for noise and avalanches in hysteretic systems. Tuning the amount of disorder in the system, we find an ordinary critical point with avalanches on all length scales. Using a mapping to the pure Ising model, we Borel sum the 6−ϵ6-\epsilon expansion to O(ϵ5)O(\epsilon^5) for the correlation length exponent. We sketch a new method for directly calculating avalanche exponents, which we perform to O(ϵ)O(\epsilon). Numerical exponents in 3, 4, and 5 dimensions are in good agreement with the analytical predictions.Comment: 134 pages in REVTEX, plus 21 figures. The first two figures can be obtained from the references quoted in their respective figure captions, the remaining 19 figures are supplied separately in uuencoded forma

    Intrinsic Thermal Sensing Controls Proteolysis of Yersinia Virulence Regulator RovA

    Get PDF
    Pathogens, which alternate between environmental reservoirs and a mammalian host, frequently use thermal sensing devices to adjust virulence gene expression. Here, we identify the Yersinia virulence regulator RovA as a protein thermometer. Thermal shifts encountered upon host entry lead to a reversible conformational change of the autoactivator, which reduces its DNA-binding functions and renders it more susceptible for proteolysis. Cooperative binding of RovA to its target promoters is significantly reduced at 37°C, indicating that temperature control of rovA transcription is primarily based on the autoregulatory loop. Thermally induced reduction of DNA-binding is accompanied by an enhanced degradation of RovA, primarily by the Lon protease. This process is also subject to growth phase control. Studies with modified/chimeric RovA proteins indicate that amino acid residues in the vicinity of the central DNA-binding domain are important for proteolytic susceptibility. Our results establish RovA as an intrinsic temperature-sensing protein in which thermally induced conformational changes interfere with DNA-binding capacity, and secondarily render RovA susceptible to proteolytic degradation

    Characterization techniques for studying the properties of nanocarriers for systemic delivery

    Get PDF
    Nanocarriers have attracted a huge interest in the last decade as efficient drug delivery systems and diagnostic tools. They enable effective, targeted, controlled delivery of therapeutic molecules while lowering the side effects caused during the treatment. The physicochemical properties of nanoparticles determine their in vivo pharmacokinetics, biodistribution and tolerability. The most analyzed among these physicochemical properties are shape, size, surface charge and porosity and several techniques have been used to characterize these specific properties. These different techniques assess the particles under varying conditions, such as physical state, solvents etc. and as such probe, in addition to the particles themselves, artifacts due to sample preparation or environment during measurement. Here, we discuss the different methods to precisely evaluate these properties, including their advantages or disadvantages. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed
    • …
    corecore