8,717 research outputs found
Causality and replication in concurrent processes
The replication operator was introduced by Milner for obtaining a simplified description of recursive processes. The standard interleaving semantics denotes the replication of a process P, written !P, a shorthand for its unbound parallel composition, operationally equivalent to the process P | P | ā¦, with P repeated as many times as needed. Albeit the replication mechanism has become increasingly popular, investigations on its causal semantics has been scarce. In fact, the correspondence between replication and unbound parallelism makes it difficult to recover basic properties usually associated with these semantics, such as the so-called concurrency diamond. In this paper we consider the interleaving semantics for the operator proposed by Sangiorgi and Walker, and we show how to refine it in order to capture causality. Furthermore, we prove it coincident with the standard causal semantics for recursive process studied in the literature, for processes defined by means of constant invocations
A Process Calculus for Dynamic Networks
In this paper we propose a process calculus framework for dynamic networks in which the network topology may change as computation proceeds. The proposed calculus allows one to abstract away from neighborhood-discovery computations and it contains features for broadcasting at multiple transmission ranges and for viewing networks at different levels of abstraction. We develop a theory of confluence for the calculus and we use the machinery developed towards
the verification of a leader-election algorithm for mobile ad hoc networks
Lessons from Huawei v. ZTE
The judgment of the European Court of Justice (CJEU) in Huawei v. ZTE4 has provided valuable guidance on the circumstances when a holder of a Standard Essential Patent (SEP) which has given a commitment to license the SEP on FRAND terms is entitled to seek an injunction against an implementer without acting in breach of competition law. In doing so, the CJEU has set out a number of important principles relating to patent rights that we describe further below. However, it also leaves some important questions unresolved. We explain the significance of the decision and offer some suggestions as to its proper interpretation and application. We also consider whether it would be desirable for the European Commission to issue some form of official guidance following the decision, notably on the steps that patentees and implementers must take, respectively, to obtain or avoid an injunction in the context of a FRAND dispute
Remarkable change of tunneling conductance in YBCO films in fields up to 32.4T
We studied the tunneling density of states in YBCO films under strong
currents flowing along node directions. The currents were induced by fields of
up to 32.4T parallel to the film surface and perpendicular to the
planes. We observed a remarkable change in the tunneling conductance at high
fields where the gap-like feature shifts discontinuously from 15meV to a lower
bias of 11meV, becoming more pronounced as the field increases. The effect
takes place in increasing fields around 9T and the transition back to the
initial state occurs around 5T in decreasing fields. We argue that this
transition is driven by surface currents induced by the applied magnetic field.Comment: 4 pages, 7 figure
Sigref ā A Symbolic Bisimulation Tool Box
We present a uniform signature-based approach to compute the most popular bisimulations. Our approach is implemented symbolically using BDDs, which enables the handling of very large transition systems. Signatures for the bisimulations are built up from a few generic building blocks, which naturally correspond to efficient BDD operations. Thus, the definition of an appropriate signature is the key for a rapid development of algorithms for other types of bisimulation.
We provide experimental evidence of the viability of this approach by presenting computational results for many bisimulations on real-world instances. The experiments show cases where our framework can handle state spaces efficiently that are far too large to handle for any tool that requires an explicit state space description.
This work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center āAutomatic Verification and Analysis of Complex Systemsā (SFB/TR 14 AVACS). See www.avacs.org for more information
Prehension and perception of size in left visual neglect
Right hemisphere damaged patients with and without left visual neglect, and age-matched controls had objects of various sizes presented within left or right body hemispace. Subjects were asked to estimate the objectsā sizes or to reach out and grasp them, in order to assess visual size processing in perceptual-experiential and action-based contexts respectively. No impairments of size processing were detected in the prehension performance of the neglect patients but a generalised slowing of movement was observed, associated with an extended deceleration phase. Additionally both patient groups reached maximum grip aperture relatively later in the movement than did controls. For the estimation task it was predicted that the left visual neglect group would systematically underestimate the sizes of objects presented within left hemispace but no such abnormalities were observed. Possible reasons for this unexpected null finding are discussed
Graphical Encoding of a Spatial Logic for the pi-Calculus
This paper extends our graph-based approach to the verification of spatial properties of Ļ-calculus specifications. The mechanism is based on an encoding for mobile calculi where each process is mapped into a graph (with interfaces) such that the denotation is fully abstract with respect to the usual structural congruence, i.e., two processes are equivalent exactly when the corresponding encodings yield isomorphic graphs. Behavioral and structural properties of Ļ-calculus processes expressed in a spatial logic can then be verified on the graphical encoding of a process rather than on its textual representation. In this paper we introduce a modal logic for graphs and define a translation of spatial formulae such that a process verifies a spatial formula exactly when its graphical representation verifies the translated modal graph formula
- ā¦