165 research outputs found

    Quantum criticality, particle-hole symmetry, and duality of the plateau-insulator transition in the quantum Hall regime

    Full text link
    We report new experimental data on the plateau-insulator transition in the quantum Hall regime, taken from a low mobility InGaAs/InP heterostructure. By employing the fundamental symmetries of the quantum transport problem we are able to disentangle the universal quantum critical aspects of the magnetoresistance data (critical indices and scaling functions) and the sample dependent aspects due to macroscopic inhomogeneities. Our new results and methodology indicate that the previously established experimental value for the critical index (kappa = 0.42) resulted from an admixture of both universal and sample dependent behavior. A novel, non-Fermi liquid value is found (kappa = 0.57) along with the leading corrections to scaling. The statement of self-duality under the Chern Simons flux attachment transformation is verified.Comment: 4 pages, 2 figure

    The problem of Coulomb interactions in the theory of the quantum Hall effect

    Full text link
    We summarize the main ingredients of a unifying theory for abelian quantum Hall states. This theory combines the Finkelstein approach to localization and interaction effects with the topological concept of an instanton vacuum as well as Chern-Simons gauge theory. We elaborate on the meaning of a new symmetry (F\cal F invariance) for systems with an infinitely ranged interaction potential. We address the renormalization of the theory and present the main results in terms of a scaling diagram of the conductances.Comment: 9 pages, 3 figures. To appear in Proceedings of the International Conference "Mesoscopics and Strongly Correlated Electron Systems", July 2000, Chernogolovka, Russi

    Topological oscillations of the magnetoconductance in disordered GaAs layers

    Full text link
    Oscillatory variations of the diagonal (GxxG_{xx}) and Hall (GxyG_{xy}) magnetoconductances are discussed in view of topological scaling effects giving rise to the quantum Hall effect. They occur in a field range without oscillations of the density of states due to Landau quantization, and are, therefore, totally different from the Shubnikov-de Haas oscillations. Such oscillations are experimentally observed in disordered GaAs layers in the extreme quantum limit of applied magnetic field with a good description by the unified scaling theory of the integer and fractional quantum Hall effect.Comment: 4 pages, 4 figure

    The instanton vacuum of generalized CPN−1CP^{N-1} models

    Full text link
    It has recently been pointed out that the existence of massless chiral edge excitations has important strong coupling consequences for the topological concept of an instanton vacuum. In the first part of this paper we elaborate on the effective action for ``edge excitations'' in the Grassmannian U(m+n)/U(m)×U(n)U(m+n)/U(m) \times U(n) non-linear sigma model in the presence of the θ\theta term. This effective action contains complete information on the low energy dynamics of the system and defines the renormalization of the theory in an unambiguous manner. In the second part of this paper we revisit the instanton methodology and embark on the non-perturbative aspects of the renormalization group including the anomalous dimension of mass terms. The non-perturbative corrections to both the β\beta and γ\gamma functions are obtained while avoiding the technical difficulties associated with the idea of {\em constrained} instantons. In the final part of this paper we present the detailed consequences of our computations for the quantum critical behavior at θ=π\theta = \pi. In the range 0≤m,n≲10 \leq m,n \lesssim 1 we find quantum critical behavior with exponents that vary continuously with varying values of mm and nn. Our results display a smooth interpolation between the physically very different theories with m=n=0m=n=0 (disordered electron gas, quantum Hall effect) and m=n=1m=n=1 (O(3) non-linear sigma model, quantum spin chains) respectively, in which cases the critical indices are known from other sources. We conclude that instantons provide not only a {\em qualitative} assessment of the singularity structure of the theory as a whole, but also remarkably accurate {\em numerical} estimates of the quantum critical details (critical indices) at θ=π\theta = \pi for varying values of mm and nn.Comment: Elsart style, 87 pages, 15 figure

    The Quantum Hall Effect: Unified Scaling Theory and Quasi-particles at the Edge

    Full text link
    We address two fundamental issues in the physics of the quantum Hall effect: a unified description of scaling behavior of conductances in the integral and fractional regimes, and a quasi-particle formulation of the chiral Luttinger Liquids that describe the dynamics of edge excitations in the fractional regime.Comment: 11 pages, LateX, 2 figures (not included, available from the authors), to be published in Proceedings of the International Summer School on Strongly Correlated Electron Systems, Lajos Kossuth University, Debrecen, Hungary, Sept 199

    Comment on ``Topological Oscillations of the Magnetoconductance in Disordered GaAs Layers''

    Full text link
    In a recent Letter, Murzin et. al. [Phys. Rev. Lett., vol. 92, 016802 (2004)] investigated "instanton effects" in the magneto resistance data taken from samples with heavily Si-doped GaAs layers at low temperatures. This topological issue originally arose in the development of a microscopic theory of quantum Hall effect some 20 years ago. The investigations by Murzin et. al., however, do not convey the correct ideas on scaling that have emerged over the years in the general theory of quantum transport.Comment: comment on Phys. Rev. Lett., vol. 92, 016802 (2004

    Exact Haldane mapping for all SS and super universality in spin chains

    Get PDF
    The low energy dynamics of the anti-ferromagnetic Heisenberg spin SS chain in the semiclassical limit S→∞S\to\infty is known to map onto the O(3) nonlinear σ\sigma model with a θ\theta term in 1+1 dimension. Guided by the underlying dual symmetry of the spin chain, as well as the recently established topological significance of "dangling edge spins," we report an {\em exact} mapping onto the O(3) model that avoids the conventional large SS approximation altogether. Our new methodology demonstrates all the super universal features of the θ\theta angle concept that previously arose in the theory of the quantum Hall effect. It explains why Haldane's original ideas remarkably yield the correct answer in spite of the fundamental complications that generally exist in the idea of semiclassical expansions

    (Mis-)handling gauge invariance in the theory of the quantum Hall effect I: Unifying action and the \nu=1/2 state

    Full text link
    We propose a unifying theory for both the integral and fractional quantum Hall regimes. This theory reconciles the Finkelstein approach to localization and interaction effects with the topological issues of an instanton vacuum and Chern-Simons gauge theory. We elaborate on the microscopic origins of the effective action and unravel a new symmetry in the problem with Coulomb interactions which we name F-invariance. This symmetry has a broad range of physical consequences which will be the main topic of future analyses. In the second half of this paper we compute the response of the theory to electromagnetic perturbations at a tree level approximation. This is applicable to the theory of ordinary metals as well as the composite fermion approach to the half-integer effect. Fluctuations in the Chern-Simons gauge fields are found to be well behaved only when the theory is F-invariant.Comment: 20 pages, 6 figures; appendix B revised; submitted to Phys.Rev.

    (Mis-)handling gauge invariance in the theory of the quantum Hall effect II: Perturbative results

    Full text link
    The concept of F-invariance, which previously arose in our analysis of the integral and half-integral quantum Hall effects, is studied in 2+2\epsilon spatial dimensions. We report the results of a detailed renormalization group analysis and establish the renormalizability of the (Finkelstein) action to two loop order. We show that the infrared behavior of the theory can be extracted from gauge invariant (F-invariant) quantities only. For these quantities (conductivity, specific heat) we derive explicit scaling functions. We identify a bosonic quasiparticle density of states which develops a Coulomb gap as one approaches the metal-insulator transition from the metallic side. We discuss the consequences of F-invariance for the strong coupling, insulating regime.Comment: 26 pages, 7 figures; minor modifications; submitted to Phys.Rev.
    • …
    corecore