1,768 research outputs found
Magnetism of Covalently Functionalized Carbon Nanotubes
We investigate the electronic structure of carbon nanotubes functionalized by
adsorbates anchored with single C-C covalent bonds. We find that, despite the
particular adsorbate, a spin moment with a universal value of 1.0 per
molecule is induced at low coverage. Therefore, we propose a mechanism of
bonding-induced magnetism at the carbon surface. The adsorption of a single
molecule creates a dispersionless defect state at the Fermi energy, which is
mainly localized in the carbon wall and presents a small contribution from the
adsorbate. This universal spin moment is fairly independent of the coverage as
long as all the molecules occupy the same graphenic sublattice. The magnetic
coupling between adsorbates is also studied and reveals a key dependence on the
graphenic sublattice adsorption site.Comment: final version, improved discussion about calculations and defect
concentratio
First-Principles Study of Substitutional Metal Impurities in Graphene: Structural, Electronic and Magnetic Properties
We present a theoretical study using density functional calculations of the
structural, electronic and magnetic properties of 3d transition metal, noble
metal and Zn atoms interacting with carbon monovacancies in graphene. We pay
special attention to the electronic and magnetic properties of these
substitutional impurities and found that they can be fully understood using a
simple model based on the hybridization between the states of the metal atom,
particularly the d shell, and the defect levels associated with an
unreconstructed D3h carbon vacancy. We identify three different regimes
associated with the occupation of different carbon-metal hybridized electronic
levels:
(i) bonding states are completely filled for Sc and Ti, and these impurities
are non-magnetic;
(ii) the non-bonding d shell is partially occupied for V, Cr and Mn and,
correspondingly, these impurties present large and localized spin moments;
(iii) antibonding states with increasing carbon character are progressively
filled for Co, Ni, the noble metals and Zn. The spin moments of these
impurities oscillate between 0 and 1 Bohr magnetons and are increasingly
delocalized.
The substitutional Zn suffers a Jahn-Teller-like distortion from the C3v
symmetry and, as a consequence, has a zero spin moment. Fe occupies a distinct
position at the border between regimes (ii) and (iii) and shows a more complex
behavior: while is non-magnetic at the level of GGA calculations, its spin
moment can be switched on using GGA+U calculations with moderate values of the
U parameter.Comment: 13 figures, 4 tables. Submitted to Phys. Rev. B on September 26th,
200
Magnetism of Substitutional Co Impurities in Graphene: Realization of Single -Vacancies
We report {\it ab initio} calculations of the structural, electronic and
magnetic properties of a graphene monolayer substitutionally doped with Co
(Co) atoms. We focus in Co because among traditional ferromagnetic
elements (Fe, Co and Ni), only Co atoms induce spin-polarization in
graphene. Our results show the complex magnetism of Co substitutional impurites
in graphene, which is mapped into simple models such as the -vacancy and
Heisenberg model. The links established in our work can be used to bring into
contact the engineering of nanostructures with the results of -models in
defective graphene. In principle, the structures considered here can be
fabricated using electron irradiation or Ar ion bombardment to create
defects and depositing Co at the same time
First-principles study of the atomic and electronic structure of the Si(111)-(5x2-Au surface reconstruction
We present a systematic study of the atomic and electronic structure of the
Si(111)-(5x2)-Au reconstruction using first-principles electronic structure
calculations based on the density functional theory. We analyze the structural
models proposed by Marks and Plass [Phys. Rev. Lett.75, 2172 (1995)], those
proposed recently by Erwin [Phys. Rev. Lett.91, 206101 (2003)], and a
completely new structure that was found during our structural optimizations. We
study in detail the energetics and the structural and electronic properties of
the different models. For the two most stable models, we also calculate the
change in the surface energy as a function of the content of silicon adatoms
for a realistic range of concentrations. Our new model is the energetically
most favorable in the range of low adatom concentrations, while Erwin's "5x2"
model becomes favorable for larger adatom concentrations. The crossing between
the surface energies of both structures is found close to 1/2 adatoms per 5x2
unit cell, i.e. near the maximum adatom coverage observed in the experiments.
Both models, the new structure and Erwin's "5x2" model, seem to provide a good
description of many of the available experimental data, particularly of the
angle-resolved photoemission measurements
Effect of electron and hole doping on the structure of C, Si, and S nanowires
We use ab initio density functional calculations to study the effect of
electron and hole doping on the equilibrium geometry and electronic structure
of C, Si, and S monatomic wires. Independent of doping, all these nanowires are
found to be metallic. In absence of doping, C wires are straight, whereas Si
and S wires display a zigzag structure. Besides two preferred bond angles of 60
deg and 120 deg in Si wires, we find an additional metastable bond angle of 90
deg in S wires. The equilibrium geometry and electronic structure of these
nanowires is shown to change drastically upon electron and hole doping.Comment: 5 pages including 5 figure
Magnetic field induced transition in a wide parabolic well superimposed with superlattice
We study a parabolic quantum wells (PQW) with
square superlattice. The magnetotransport in PQW with
intentionally disordered short-period superlattice reveals a surprising
transition from electrons distribution over whole parabolic well to
independent-layer states with unequal density. The transition occurs in the
perpendicular magnetic field at Landau filling factor and is
signaled by the appearance of the strong and developing fractional quantum Hall
(FQH) states and by the enhanced slope of the Hall resistance. We attribute the
transition to the possible electron localization in the x-y plane inside the
lateral wells, and formation of the FQH states in the central well of the
superlattice, driven by electron-electron interaction.Comment: 5 pages, 4 figure
Density waves and star formation in grand design spirals
HII regions in the arms of spiral galaxies are indicators of recent
star-forming processes. They may have been caused by the passage of the density
wave or simply created by other means near the arms. The study of these regions
may give us clues to clarifying the controversy over the existence of a
triggering scenario, as proposed in the density wave theory. Using H
direct imaging, we characterize the HII regions from a sample of three grand
design galaxies: NGC5457, NGC628 and NGC6946. Broad band images in R and I were
used to determine the position of the arms. The HII regions found to be
associated with arms were selected for the study. The age and the star
formation rate of these HII regions was obtained using measures on the
H line. The distance between the current position of the selected HII
regions and the position they would have if they had been created in the centre
of the arm is calculated. A parameter, T, which measures whether a region was
created in the arm or in the disc, is defined. With the help of the T parameter
we determine that the majority of regions were formed some time after the
passage of the density wave, with the regions located `behind the arm' (in the
direction of the rotation of the galaxy) the zone they should have occupied had
they been formed in the centre of the arm. The presence of the large number of
regions created after the passage of the arm may be explained by the effect of
the density wave, which helps to create the star-forming regions after its
passage. There is clear evidence of triggering for NGC5457 and a co-rotation
radius is proposed. A more modest triggering seems to exist for NGC628 and non
significant evidence of triggering are found for NGC6946.Comment: 10 pages, 20 figures, accepted for publication in A&
Calculation of the Voronoi boundary for lens-shaped particles and spherocylinders
We have recently developed a mean-field theory to estimate the packing
fraction of non-spherical particles [A. Baule et al., Nature Commun. (2013)].
The central quantity in this framework is the Voronoi excluded volume, which
generalizes the standard hard-core excluded volume appearing in Onsager's
theory. The Voronoi excluded volume is defined from an exclusion condition for
the Voronoi boundary between two particles, which is usually not tractable
analytically. Here, we show how the technical difficulties in calculating the
Voronoi boundary can be overcome for lens-shaped particles and spherocylinders,
two standard prolate and oblate shapes with rotational symmetry. By decomposing
these shapes into unions and intersections of spheres analytical expressions
can be obtained.Comment: 19 pages, 8 figure
Crossover between distinct mechanisms of microwave photoresistance in bilayer systems
We report on temperature-dependent magnetoresistance measurements in balanced
double quantum wells exposed to microwave irradiation for various frequencies.
We have found that the resistance oscillations are described by the
microwave-induced modification of electron distribution function limited by
inelastic scattering (inelastic mechanism), up to a temperature of T*~4 K. With
increasing temperature, a strong deviation of the oscillation amplitudes from
the behavior predicted by this mechanism is observed, presumably indicating a
crossover to another mechanism of microwave photoresistance, with similar
frequency dependence. Our analysis shows that this deviation cannot be fully
understood in terms of contribution from the mechanisms discussed in theory.Comment: 7 pages, 4 figure
- …