7,704 research outputs found

    Helicity of convective flows from localized heat source in a rotating layer

    Full text link
    Experimental and numerical study of the steady-state cyclonic vortex from isolated heat source in a rotating fluid layer is described. The structure of laboratory cyclonic vortex is similar to the typical structure of tropical cyclones from observational data and numerical modelling including secondary flows in the boundary layer. Differential characteristics of the flow were studied by numerical simulation using CFD software FlowVision. Helicity distribution in rotating fluid layer with localized heat source was analysed. Two mechanisms which play role in helicity generation are found. The first one is the strong correlation of cyclonic vortex and intensive upward motion in the central part of the vessel. The second one is due to large gradients of velocity on the periphery. The integral helicity in the considered case is substantial and its relative level is high

    Theory of x-ray scattering from laser-driven electronic systems

    Full text link
    We describe, within the framework of quantum electrodynamics, an interaction between a non-resonant hard x-ray pulse and an electronic system in the presence of a temporally periodic laser field driving electron dynamics in this system. We apply Floquet theory to describe the laser-driven electronic system, and then obtain the scattering probability of an arbitrary nonresonant x-ray pulse from such a system employing the density-matrix formalism. We show that the scattering probability can be connected to the time-dependent electron density of the driven electronic system only under certain conditions, in particular, if the bandwidth of the probe x-ray pulse is sufficiently narrow to spectroscopically resolve transitions to different final states. A special focus is laid on application of the theory to laser-driven crystals in a strongly nonperturbative regime. We show how the time-dependent electron density of a crystal can be reconstructed from energy-resolved scattering patterns. This is illustrated by a calculation of a diffraction signal from a driven MgO crystal.Comment: accepted to Phys Rev

    Thermal decomposition of a honeycomb-network sheet - A Molecular Dynamics simulation study

    Full text link
    The thermal degradation of a graphene-like two-dimensional triangular membrane with bonds undergoing temperature-induced scission is studied by means of Molecular Dynamics simulation using Langevin thermostat. We demonstrate that the probability distribution of breaking bonds is highly peaked at the rim of the membrane sheet at lower temperature whereas at higher temperature bonds break at random anywhere in the hexagonal flake. The mean breakage time τ\tau is found to decrease with the total number of network nodes NN by a power law τN0.5\tau \propto N^{-0.5} and reveals an Arrhenian dependence on temperature TT. Scission times are themselves exponentially distributed. The fragmentation kinetics of the average number of clusters can be described by first-order chemical reactions between network nodes nin_i of different coordination. The distribution of fragments sizes evolves with time elapsed from a δ\delta-function through a bimodal one into a single-peaked again at late times. Our simulation results are complemented by a set of 1st1^{st}-order kinetic differential equations for nin_i which can be solved exactly and compared to data derived from the computer experiment, providing deeper insight into the thermolysis mechanism.Comment: 21pages, 9 figures, LaTeX, revised versio

    Inversionless light amplification and optical switching controlled by state-dependent alignment of molecules

    Full text link
    We propose a method to achieve amplification without population inversion by anisotropic molecules whose orientation by an external electric field is state-dependent. It is based on decoupling of the lower-state molecules from the resonant light while the excited ones remain emitting. The suitable class of molecules is discussed, the equation for the gain factor is derived, and the magnitude of the inversionless amplification is estimated for the typical experimental conditions. Such switching of the sample from absorbing to amplifying via transparent state is shown to be possible both with the aid of dc and ac control electric fields.Comment: AMS-LaTeX v1.2, 4 pages with 4 figure
    corecore