102 research outputs found
Ku-band radar threshold analysis
The statistics of the CFAR threshold for the Ku-band radar was determined. Exact analytical results were developed for both the mean and standard deviations in the designated search mode. The mean value is compared to the results of a previously reported simulation. The analytical results are more optimistic than the simulation results, for which no explanation is offered. The normalized standard deviation is shown to be very sensitive to signal-to-noise ratio and very insensitive to the noise correlation present in the range gates of the designated search mode. The substantial variation in the CFAR threshold is dominant at large values of SNR where the normalized standard deviation is greater than 0.3. Whether or not this significantly affects the resulting probability of detection is a matter which deserves additional attention
Payload/orbiter signal-processing and data-handling system evaluation
Incompatibilities between orbiter subsystems and payload communication systems to assure that acceptable and to end system performamce will be achieved are identified. The potential incompatabilities are associated with either payloads in the cargo bay or detached payloads communicating with the orbiter via an RF link. The payload signal processing and data handling systems are assessed by investigating interface problems experienced between the inertial upper stage and the orbiter since similar problems are expected for other payloads
Shuttle Ku-band and S-band communications implementation study
Various aspects of the shuttle orbiter S-band network communication system, the S-band payload communication system, and the Ku-band communication system are considered. A method is proposed for obtaining more accurate S-band antenna patterns of the actual shuttle orbiter vehicle during flight because the preliminary antenna patterns using mock-ups are not realistic that they do not include the effects of additional appendages such as wings and tail structures. The Ku-band communication system is discussed especially the TDRS antenna pointing accuracy with respect to the orbiter and the modifications required and resulting performance characteristics of the convolutionally encoded high data rate return link to maintain bit synchronizer lock on the ground. The TDRS user constraints on data bit clock jitter and data asymmetry on unbalanced QPSK with noisy phase references are included. The S-band payload communication system study is outlined including the advantages and experimental results of a peak regulator design built and evaluated by Axiomatrix for the bent-pipe link versus the existing RMS-type regulator. The nominal sweep rate for the deep-space transponder of 250 Hz/s, and effects of phase noise on the performance of a communication system are analyzed
Serially concatenated coding for broadcasting S-UMTS applications
Satellite-UMTS supports broadcast applications that involve transmission of the same encoded data over channels that may vary significantly. The same code must allow a user with a good channel to recover the information with low complexity, while a user with a bad channel should still be able to achieve an acceptable BER at the cost of increased complexity and/or decoding delay. To this end, we propose serially concatenated multilevel code structures that employ PSK modulation. The receiver has the flexibility to achieve turbo-code, trellis-code or uncoded performance, depending on the decoding effort. Design considerations include the constituent encoder design and the use of a non-uniform constellation. Simulation results investigate the system's performance and highlight different parameters trade-offs
Shuttle orbiter Ku-band radar/communications system design evaluation
Tasks performed in an examination and critique of a Ku-band radar communications system for the shuttle orbiter are reported. Topics cover: (1) Ku-band high gain antenna/widebeam horn design evaluation; (2) evaluation of the Ku-band SPA and EA-1 LRU software; (3) system test evaluation; (4) critical design review and development test evaluation; (5) Ku-band bent pipe channel performance evaluation; (6) Ku-band LRU interchangeability analysis; and (7) deliverable test equipment evaluation. Where discrepancies were found, modifications and improvements to the Ku-band system and the associated test procedures are suggested
Space Shuttle program communication and tracking systems interface analysis
The Space Shuttle Program Communications and Tracking Systems Interface Analysis began April 18, 1983. During this time, the shuttle communication and tracking systems began flight testing. Two areas of analysis documented were a result of observations made during flight tests. These analyses involved the Ku-band communication system. First, there was a detailed analysis of the interface between the solar max data format and the Ku-band communication system including the TDRSS ground station. The second analysis involving the Ku-band communication system was an analysis of the frequency lock loop of the Gunn oscillator used to generate the transmit frequency. The stability of the frequency lock loop was investigated and changes to the design were reviewed to alleviate the potential loss of data due the loop losing lock and entering the reacquisition mode. Other areas of investigation were the S-band antenna analysis and RF coverage analysis
Embracing Uncertainty Flexibility: Harnessing a Supervised Tree Kernel to Empower Ensemble Modelling for 2D Echocardiography-Based Prediction of Right Ventricular Volume
The right ventricular (RV) function deterioration strongly predicts clinical
outcomes in numerous circumstances. To boost the clinical deployment of
ensemble regression methods that quantify RV volumes using tabular data from
the widely available two-dimensional echocardiography (2DE), we propose to
complement the volume predictions with uncertainty scores. To this end, we
employ an instance-based method which uses the learned tree structure to
identify the nearest training samples to a target instance and then uses a
number of distribution types to more flexibly model the output. The
probabilistic and point-prediction performances of the proposed framework are
evaluated on a relatively small-scale dataset, comprising 100 end-diastolic and
end-systolic RV volumes. The reference values for point performance were
obtained from MRI. The results demonstrate that our flexible approach yields
improved probabilistic and point performances over other state-of-the-art
methods. The appropriateness of the proposed framework is showcased by
providing exemplar cases. The estimated uncertainty embodies both aleatoric and
epistemic types. This work aligns with trustworthy artificial intelligence
since it can be used to enhance the decision-making process and reduce risks.
The feature importance scores of our framework can be exploited to reduce the
number of required 2DE views which could enhance the proposed pipeline's
clinical application.Comment: In the Proceedings of the 16th International Conference of Machine
Vision (ICMV 2023), November 15-18, Yerevan, Armeni
Engineering evaluations and studies. Volume 2: Exhibit B, part 1
Ku-band communication system analysis, S-band system investigations, payload communication investigations, shuttle/TDRSS and GSTDN compatibility analysis are discussed
Engineering evaluations and studies. Volume 3: Exhibit C
High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed
Assembly planning in cluttered environments through heterogeneous reasoning
Assembly recipes can elegantly be represented in description logic theories. With such a recipe, the robot can figure out the next assembly step through logical inference. However, before performing an action, the robot needs to ensure various spatial constraints are met, such as that the parts to be put together are reachable, non occluded, etc. Such inferences are very complicated to support in logic theories, but specialized algorithms exist that efficiently compute qualitative spatial relations such as whether an object is reachable. In this work, we combine a logic-based planner for assembly tasks with geometric reasoning capabilities to enable robots to perform their tasks under spatial constraints. The geometric reasoner is integrated into the logic-based reasoning through decision procedures attached to symbols in the ontology.Peer ReviewedPostprint (author's final draft
- …