1,069 research outputs found

    How to prepare quantum states that follow classical paths

    Full text link
    We present an alternative quantization procedure for the one-dimensional non-relativistic quantum mechanics. We show that, for the case of a free particle and a particle in a box, the complete classical and quantum correspondence can be obtained using this formulation. The resulting wave packets do not disperse and strongly peak on the classical paths. Moreover, for the case of the free particle, they satisfy minimum uncertainty relation.Comment: 10 pages, 3 figures, to appear in Europhysics Letter

    On the modification of Hamiltonians' spectrum in gravitational quantum mechanics

    Full text link
    Different candidates of Quantum Gravity such as String Theory, Doubly Special Relativity, Loop Quantum Gravity and black hole physics all predict the existence of a minimum observable length or a maximum observable momentum which modifies the Heisenberg uncertainty principle. This modified version is usually called the Generalized (Gravitational) Uncertainty Principle (GUP) and changes all Hamiltonians in quantum mechanics. In this Letter, we use a recently proposed GUP which is consistent with String Theory, Doubly Special Relativity and black hole physics and predicts both a minimum measurable length and a maximum measurable momentum. This form of GUP results in two additional terms in any quantum mechanical Hamiltonian, proportional to αp3\alpha p^3 and α2p4\alpha^2 p^4, respectively, where α∼1/MPlc\alpha \sim 1/M_{Pl}c is the GUP parameter. By considering both terms as perturbations, we study two quantum mechanical systems in the framework of the proposed GUP: a particle in a box and a simple harmonic oscillator. We demonstrate that, for the general polynomial potentials, the corrections to the highly excited eigenenergies are proportional to their square values. We show that this result is exact for the case of a particle in a box.Comment: 11 pages, to appear in Europhysics Letter

    One-dimensional hydrogen atom with minimal length uncertainty and maximal momentum

    Full text link
    We present exact energy eigenvalues and eigenfunctions of the one-dimensional hydrogen atom in the framework of the Generalized (Gravitational) Uncertainty Principle (GUP). This form of GUP is consistent with various theories of quantum gravity such as string theory, loop quantum gravity, black-hole physics, and doubly special relativity and implies a minimal length uncertainty and a maximal momentum. We show that the quantized energy spectrum exactly agrees with the semiclassical results.Comment: 10 pages, 1 figur

    Generalized Uncertainty Principle and the Ramsauer-Townsend Effect

    Full text link
    The scattering cross section of electrons in noble gas atoms exhibits a minimum value at electron energies of approximately 1eV. This is the Ramsauer-Townsend effect. In this letter, we study the Ramsauer-Townsend effect in the framework of the Generalized Uncertainty Principle.Comment: 11 pages, 3 figure

    Juxtaposition of Women, Culture, and Nature in Alice Walker's Possessing the Secret of Joy

    Full text link
    The present paper focuses on the tradition of women's circumsicion in the African tribe of Olinkan in Alice Walker's Possesing the Secret of Joy. The Olinkans are asked by the white settlers to stop women's mutilation, but Olinkan men continue this custom stealthily to ensure their patriarchial dominance. This novel is a complicated juxtaposition of two different types of oppression: one by White male colonizers over an African native land, and the other one by the native Olinkan men over native women. In this juxtaposition women and land are both victims exploited and manipulated by men, no matter Black or White. This novel is also seen as a fertile ground to analyze the dual domination of both nature and women by the Olinkan men and White colonizers who are both trying to impose their androcentric rules that are created to dominate women and land, respectively

    Quantum Stephani exact cosmological solutions and the selection of time variable

    Full text link
    We study perfect fluid Stephani quantum cosmological model. In the present work the Schutz's variational formalism which recovers the notion of time is applied. This gives rise to Wheeler-DeWitt equation for the scale factor. We use the eigenfunctions in order to construct wave packets for each case. We study the time-dependent behavior of the expectation value of the scale factor, using many-worlds and deBroglie-Bohm interpretations of quantum mechanics.Comment: 19 pages, 7 figure

    Modification of Coulomb's law in closed spaces

    Full text link
    We obtain a modified version of Coulomb's law in two- and three-dimensional closed spaces. We demonstrate that in a closed space the total electric charge must be zero. We also discuss the relation between total charge neutrality of a isotropic and homogenous universe to whether or not its spatial sector is closed.Comment: 11 pages, 3 figure
    • …
    corecore