123 research outputs found

    Noble gas solubility in silicate melts:a review of experimentation and theory, and implications regarding magma degassing processes

    Get PDF
    Noble gas solubility in silicate melts and glasses has gained a crucial role in Earth Sciences investigations and in the studies of non-crystalline materials on a micro to a macro-scale. Due to their special geochemical features, noble gases are in fact ideal tracers of magma degassing. Their inert nature also allows them to be used to probe the structure of silicate melts. Owing to the development of modern high pressure and temperature technologies, a large number of experimental investigations have been performed on this subject in recent times. This paper reviews the related literature, and tries to define our present state of knowledge, the problems encountered in the experimental procedures and the theoretical questions which remain unresolved. Throughout the manuscript I will also try to show how the thermodynamic and structural interpretations of the growing experimental dataset are greatly improving our understanding of the dissolution mechanisms, although there are still several points under discussion. Our improved capability of predicting noble gas solubilities in conditions closer to those found in magma has allowed scientists to develop quantitative models of magma degassing, which provide constraints on a number of questions of geological impact. Despite these recent improvements, noble gas solubility in more complex systems involving the main volatiles in magmas, is poorly known and a lot of work must be done. Expertise from other fields would be extremely valuable to upcoming research, thus focus should be placed on the structural aspects and the practical and commercial interests of the study of noble gas solubility

    Long-term geochemical monitoring and extensive/compressive phenomena: case study of the Umbria Region (Central Apennines, Italy)

    Get PDF
    Long-term geochemical monitoring performed in the seismic area of the Umbria-Marche region of Italy (i.e. Central Apennines) has allowed us to create a model of the circulation of fluids and interpret the temporal chemical and isotopic variations of both the thermal springs as well as the gas vents. Coincident with the last seismic crisis, which struck the region in 1997-1998, an enhanced CO2 degassing on a regional scale caused a pH-drop in all the thermal waters as a consequence of CO2 dissolution. Furthermore, much higher 3He/4He isotope ratios pointed to a slight mantle-derived contribution. Radon activity increased to well above the ±2 sinterval of the earlier seismic period, after which it abruptly decreased to very low levels a few days before the occurrence of the single deep-located shock (March 26, 1998, 51 km deep). The anomalous CO2 discharge was closely related to the extensional movement of the normal faults responsible for the Mw 5.7, 6.0 and 5.6 main shocks that characterized the earlier seismic phase. In contrast, a clear compressive sign is recognizable in the transient disappearance of the deep-originating components related to the Mw 5.3, 51 km-deep event that occurred on March 26, 1998. Anomalies were detected concomitantly with the seismicity, although they also occurred after the seismic crisis had terminated. We argue that the observed geochemical anomalies were driven by rock permeability changes induced by crustal deformations, and we describe how, in the absence of any release of elastic energy, the detection of anomalies reveals that a seismogenic process is developing. Indeed, comprehensive, long-term geochemical monitoring can provide new tools allowing us to better understand the development of seismogenesis

    Elemental and isotope covariation of noble gases in mineral phases from Etnean volcanics erupted during 2001–2005, and genetic relation with peripheral gas discharges

    Get PDF
    During 2001–2005, Mount Etna was characterized by intense eruptive activity involving the emission of petrologically different products from several vents, which involved at least two types of magma with different degrees of evolution. We investigated the ratios and abundances for noble-gas isotopes in fluid inclusions trapped in olivines and pyroxenes in the erupted products. We confirm that olivine has the most efficient crystalline structure for preserving the pristine composition of entrapped gases, while pyroxene can suffer diffusive He loss. Both the minerals also experience noble gas air contamination after eruption. Helium isotopes of the products genetically linked to the two different magmas fall in the isotopic range typical of the Etnean volcanism. This result is compatible with the metasomatic process that the Etnean mantle is undergoing by fluids from the Ionian slab during the last ten kyr, as previously inferred by isotope and trace element geochemistry. Significant differences were also observed among olivines of the same parental magma that erupted throughout 2001–2005, with 3He/4He ratios moving from about 7.0 Ra in 2001 volcanites, to 6.6 Ra in 2004–2005 products. Changes in He abundances and isotope ratios were attributed to variations in protracted degassing of the same magma bodies from the 2001 to the 2004–2005 events, with the latter lacking any contribution of undegassed magma. The decrease in 3He/4He is similar to that found from measurements carried out every fifteen days during the same period in gases discharged at the periphery of the volcano. To our knowledge this is the first time that such a comparison has been performed so in detail, and provides strong evidence of the real-time feeding of peripheral emissions by magmatic degassing

    Long-term geochemical monitoring and extensive/compressive phenomena: case study of the Umbria Region (Central Apennines, Italy)

    Get PDF
    Long-term geochemical monitoring performed in the seismic area of the Umbria-Marche region of Italy (i.e. Central Apennines) has allowed us to create a model of the circulation of fluids and interpret the temporal chemical and isotopic variations of both the thermal springs as well as the gas vents. Coincident with the last seismic crisis, which struck the region in 1997-1998, an enhanced CO2 degassing on a regional scale caused a pH-drop in all the thermal waters as a consequence of CO2 dissolution. Furthermore, much higher 3He/4He isotope ratios pointed to a slight mantle-derived contribution. Radon activity increased to well above the ±2 sinterval of the earlier seismic period, after which it abruptly decreased to very low levels a few days before the occurrence of the single deep-located shock (March 26, 1998, 51 km deep). The anomalous CO2 discharge was closely related to the extensional movement of the normal faults responsible for the Mw 5.7, 6.0 and 5.6 main shocks that characterized the earlier seismic phase. In contrast, a clear compressive sign is recognizable in the transient disappearance of the deep-originating components related to the Mw 5.3, 51 km-deep event that occurred on March 26, 1998. Anomalies were detected concomitantly with the seismicity, although they also occurred after the seismic crisis had terminated. We argue that the observed geochemical anomalies were driven by rock permeability changes induced by crustal deformations, and we describe how, in the absence of any release of elastic energy, the detection of anomalies reveals that a seismogenic process is developing. Indeed, comprehensive, long-term geochemical monitoring can provide new tools allowing us to better understand the development of seismogenesis

    Equilibrium versus non-equilibrium magmatic degassing of noble gases from mid-ocean ridges: inferences on magma dynamics and upper mantle composition

    Get PDF
    In magmatic systems having CO2 as main volatile, the dynamics of magma ascent and decompression can be faster than that of CO2 diffusion into bubbles. In this case, the diffusivity ratios between CO2 and noble gases, rather than solubility ratios, are the main control of the proportions of CO2 and noble gases in the exsolving gas phase. We have developed a model of bubble growth in silicate melts that calculates the extent of both CO2 supersaturation and kinetic fractionation among noble gases in vesicles in relation to the decompressive rate of basaltic melts. By including the stateof art calculations of solubilities and diffusivities of the involved volatiles, the model predicts that magma degassing at low pressure fractionates both He/Ar and He/CO2 ratios by a similar extent, due to comparable Ar and CO2 diffusivity. In contrast, the slower CO2 diffusion at high pressure causes early kinetic effects on Ar/CO2 ratio and dramatically changes the degassing paths. When applied to the global He-Ar-CO2 dataset of fluid inclusions in mid-ocean-ridge glasses, the model displays that non-equilibrium fractionations among He, Ar and CO2, driven by their different diffusivities in silicate melts, are common in most of the natural conditions of magma decompression and their signature strongly depends on pressure of degassing. The different geochemical signatures among suites of data coming from different ridge segments mainly depend on the depth of the magma chamber where the melt was stored. Moreover, variations inside a single suite emerge due to the interplay between variable ascent speed of magma and cooling rate of the emplaced lava. As a result, two data groups coming from the Pito Seamount suite (Easter Microplate East ridge), showing different degree of CO2 supersaturation and He/Ar fractionation, provide ascent rates which differ by ten folds or even more. The large variations in both the He/CO2 and Ar/CO2 ratios at almost constant He/Ar, displayed in products coming from the Mid-Atlantic Ridge 24–30°N segment and the Rodriguez Triple Junction, require magma storage and degassing processes occurring at high-pressure conditions. In contrast, the simultaneous increase in both He/CO2 and He/Ar of the East Pacific Rise and South-East Indian Ridge data sets suggests the dominance of low-pressure fractionation, implying that the shallow magma chambers are at a lower depth than those of the Mid-Atlantic Ridge 24–30°N and Rodriguez Triple Junction. Our conclusions support the presence of a relationship between spreading rate and depth of high-temperature zones below ridges, and are consistent with the depth of magma chambers as suggested from seismic studies. Finally, the non-equilibrium degassing model provides striking constraints on the compositions of noble gases and carbon in mantle-derived magmas. Our results dispense in fact with the supposed need for He-Ar-CO2 heterogeneities in the upper mantle, because the degassing of a single, popping-rock-like primary magma is able to explain all the available data

    A two-component mantle source feeding Mt. Etna magmatism; insights from the geochemistry of primitive magmas.

    Get PDF
    The major elements, trace elements and Sr and Nd isotopes of selected Etnean primitive rocks (b15 ky BP) were studied in order to characterize their mantle source. The noble-gas geochemistry of fluid inclusions in minerals fromthe same lavaswas also investigated. Themajor element compositions ofwhole rocks and minerals showed that these products are among the most primitive atMt. Etna, comprising 6.3–17.5 wt.% MgO. The variable LREE (Light Rare Earth Elements) enrichment relative to MORB (Mid-Ocean Ridge Basalt) (Lan/Ybn = 11–26), togetherwith the patterns of certain trace-element ratios (i.e., Ce/Yb versus Zr/Nb and Th/Y versus La/Yb), can be attributed to varying degrees of melting of a common mantle source. Numerical simulations performed with the MELTS program allowed the melting percentages associated with each product to be estimated. This led us to recalculate the hypothetical parental trace-element content of the Etneanmantle source, whichwas common to all of the investigated rocks. The characteristics of the Sr, Nd and He isotopes confirmed the primitive nature of the rocks,with themost-depleted and primitive lava being that ofMt. Spagnolo (SPA; 143Nd/144Nd = 0.512908 87Sr/ 86Sr = 0.703317–0.703325 and 3He/4He = 7.6 Ra), and highlighted the similarity of the mantle sources feeding the volcanic activity of Mt. Etna and the Hyblean Plateau (a region to the south of Mt. Etna and characterized by oldermagmatismthan Mt. Etna). The coupling of noble gases and trace elements suggests an origin for the investigated Etnean lavas from melting of a Hyblean-like mantle, consisting of a two-component source where a peridotitic matrix is veined by 10% pyroxenite. A variable degree of mantle contamination by crustal-like fluids, probably related to subduction, is proposed to explain the higher Sr-isotope and lowerNd-isotope values in some rocks (143Nd/144Nd up to 0.512865 and 87Sr/86Sr up to 0.703707). This process probably occurred in the source prior tomagma generation, refertilizing some portions of themantle. Accordingly, the estimated degree of melting responsible for each magma appears to be related to its 87Sr/86Sr enrichment. In contrast, the decoupling between 3He/4He and 87Sr/86Sr ratios requires the occurrence in the crustal reservoirs of further processes capable of shifting the He isotope ratio towards slightly more radiogenic values, such as magma aging or a contribution of shallow fluid. Therefore, different residence times in the Etnean reservoir and/or various rates of magma ascent could be key parameters for preserving the original He isotope marker of the Etnean mantle source. © 2013 Published by Elsevier

    A LA-ICP-MS STUDY OF CARBONATITES FROM FUERTEVENTURA, CANARY ISLAND

    Get PDF
    Carbonatites complexes are very rare in oceanic environments and in the Atlantic Ocean they can be only found at Cape Verde islands and Fuerteventura. Fuerteventura is the second largest island in the Canary Archipelago and is located on a transitional, continental to oceanic, crust. It consists essentially of Mesozoic sediments, submarine volcanic rocks, subaerial basaltic and trachytic series, ultramafic, mafic to felsic intrusives (clinopyroxenites, melteijites-ijolites, nepheline-monzogabbros, nepheline-sienites) and carbonatitic dike swarms (age 25 Ma). Carbonatite dike (Ca-carbonatites) mineralogy consists of calcite, aegirine-augite, albite, K-feldspar, biotite, apatite, Fe-Ti oxides and accessory minerals, such as zircon, barite, monazite and pyrochlore. The degree of alteration of carbonatites (evaluated by DTA and XRD) is generally low, with the occurrence of illite-montmorillonite mixed layers, vermiculite and chlorite. Whole rock samples (XRF) are high in CaO (> 50 %) and SrO (> 2-3 %) and very low in MgO (< 1-2 %). Trace elements were determined by LA-ICP-MS on calcite and accessory minerals (pyrochlore, monazite, zircon). Results show in calcite phenocrysts REE patterns highly enriched in all REEs (sum REE= 1186-2943 ppm) and particularly in LREE: LaN = 2178 (chondrite normalized), CeN = 1499, with respect to HREE (YbN = 37, LuN = 34) and rather fractionated pattern (La/Yb)N = 58. Small negative Eu anomalies do also occur (Eu/Eu* = 0.77 - 0.94) and these are coupled with high Sr anomalies (Sr/Sr* = 28.3 - 58.7). REE in pyrochlore are extremely enriched in REE (sum REE= 12.8 wt %) with very high LREE (LaN = 71214 and CeN = 62803) and HREE (YbN = 997, LuN = 695) with a slightly steeper pattern if compared to calcite: (La/Yb)N = 71. No significative Eu anomalies were found (Eu/Eu* = 1.06), while there is a conisistent Sr positive anomaly in spiderdiagrams (Sr/Sr* = 1.74). Preliminar results show that pyrochlore is the main mineral repository of REEs and its occurrence, even in trace amounts, gives the fingerprint to trace element to whole rock

    Melt inclusions track changes in chemistry and oxidation state of Etnean magmas

    Get PDF
    Mount Etna (Italy) is a stratovolcano, located near the convergent boundary between African and European plates. Since its appearance, it was characterized by continuous variability of eruptive style and magma composition, though more subtle. Currently, its volcanic activity consists of effusive and explosive eruptions marked by high gas fluxes. Olivine hosted melt inclusions (MIs), belonging to products of the last 15 ky, were analysed for their chemical composition, volatiles contents and Fe speciation, in order to interpret the chemical variability and to evaluate the oxidation state of Etnean magmas and its eventual evolution. Olivine phenocrysts were selected from the most primitive Fall Stratified (FS) eruption of picritic composition (Fo91), from the oldest Mt. Spagnolo and from more recent eruptions: 2002-2003, 2006, 2008-2009, and 2013; the MIs of some of these eruptions (Mt Spagnolo, 2008-2009 and 2013) are here investigated for the first time. The variability of the major elements contents in the MIs designates a continuous differentiation trend, marked by the decrease of MgO and CaO/Al2O3 ratio and the increase of alkalis. The volatiles content in etnean magmas is extremely variable. The highest H2O (5-6 wt.%) and CO2 (~0.5 wt.%) contents are found in FS magma entrapped at depth of 16-18 km (below crater level). S content achieves 4150 ppm in the older Mt. Spagnolo inclusions, completely H2O and CO2\u2013free. Fe3+/\u3a3Fe ratios obtained from XANES spectra for some melt inclusions, generally decrease from the most primitive and volatile-rich FS to the most evolved and degassed melts, suggesting changing in the oxidation state of etnean magmas. Petrological arguments coupled to modelling of fractional crystallization and degassing processes concur to suggest that the magmas of Mt. Spagnolo and of the recent eruptions may be produced by differentiation from the most oxidized and hydrous pristine FS magma along highly variable P-T paths, occasionally accompanied by mixing processes

    Inferences on physico-chemical conditions and gas-water interaction by new quantitative approaches: The case of Panarea (Italy)

    Get PDF
    We have developed two new quantitative approaches to calculate temperatures in hydrothermal reservoirs by using the CO2-CH4-CO-H2 gaseous system and to model selective dissolution of CO2-H2S-N2-CH4-He-Ne mixtures in fresh and/or air saturated seawater. The anomalous outgassing starting November 2003 from the submarine exhalative system offshore Panarea island (Italy), was the occasion to apply such approaches to the extensive collection of volcanic gases. Gas geothermometry suggest the presence of a deep geothermal system at temperature up to 350°C and about 12 mol% CO2 in the vapor, which feeds the submarine emissions. Based on the fractional dissolution model, the rising geothermal vapor interacts with air-saturated seawater at low depths, dissolving 30-40% CO2 and even more H2S, modifying the pH of the aqueous solution and stripping the dissolved atmospheric volatiles (N2, Ne). Interaction of the liquid phase of the thermal fluids with country rocks, as well extensive mixing with seawater, have been also recognized and quantified. The measured output of hydrothermal fluids from Panarea exhalative field [1] accounts for the involvement of volatiles from an active degassing magma, nonetheless the climax of the investigated phenomenon is probably overcome and the system is new tending towards a steady-state. Our quantitative approaches allow us to monitor the geochemical indicators of the geothermal physico-chemical conditions and their potential evolution towards phreatic events or massive gas releases, which certainly are the main hazards to be expected in the area. The event at Panarea has in fact highlighted how hydrothermal systems can exhibit dramatic and sudden changes of their physico-chemical conditions and rate of fluid release, as a response to variable activity of feeding magmatic systems

    A two-component mantle extending from Hyblean Plateau to Mt Etna (Eastern Sicily) as inferred by an integrated approach with noble gases, trace elements and isotope geochemistry.

    Get PDF
    We carried out a geochemical investigation of the mantle beneath Hyblean and Etnean area through ultramafic xenoliths (peridotites and pyroxenites) retained in Miocenic age Hyblean volcanics and primitive Etnean lavas and tephra, respectively. Major and trace elements and Sr-Nd isotopes (whole rock and /or minerals) were analysed together with noble gases entrapped in fluid inclusions hosted in olivines and pyroxenes phenocrysts. The geochemical results from Hyblean xenoliths study highlighted the presence of two distinct compositional groups: the peridotites, featured by a more enriched geochemical fingerprint (3He/4He ∼7 Ra, 143Nd/144Nd ∼0.5129 and Zr/Nb ∼ 4) whereas the pyroxenites, characterized by a more primitive character (3He/4He up to 7.6 Ra, 143Nd/144Nd ∼0.5130 and Zr/Nb ∼30). Our interpretation is that metasomatic processes interested the Hyblean lithosphere and the pyroxenites (former primitive mantle melts) represent the metasomatizing agent. During their ascent these primitive melts permeated the peridotitic mantle at different levels, producing a variable degree of refertilization. The metasomatic processes affected distributions of both trace elements and noble gases, even though these geochemical tracers displayed very different sensitivity to the effects of metasomatic mixing between two end-members. The investigated primitive Etnean magmas showed a variable REE enrichment respect to MORB (Lan/Ybn =11-26) and isotopic values of Sr, Nd and He in the following ranges: 143Nd/144Nd= 0.512869 -0.512896; 86Sr/87Sr=0.70330 - 0.70370; 3He/4He = 7-7.6 Ra. A variable melting degree of a common mantle source together with a variable level of crystallization and crustal contamination is hypothesised to explain the variations exhibited by the above Etnean dataset. Numerical simulation performed on MELT code allowed to estimate the trace elements content of the Etnean mantle source. These results, joined to the most primitive isotopic values of He- Sr- Nd among the investigated products helped to geochemically characterize the mantle beneath the Etnean area suggesting a strict relation with that Hyblean. Indeed, the modeled Etnean source locates on the mixing zone between the Hyblean peridotite and pyroxenite, so testifying a simultaneous contribution of two components in the genesis of the investigated lavas and supporting the hypothesis of an heterogeneous and metasomatized lithosphere common to both areas
    • …
    corecore