265 research outputs found

    Spectroscopy on two coupled flux qubits

    Full text link
    We have performed spectroscopy measurements on two coupled flux qubits. The qubits are coupled inductively, which results in a σ1zσ2z\sigma_1^z\sigma_2^z interaction. By applying microwave radiation, we observe resonances due to transitions from the ground state to the first two excited states. From the position of these resonances as a function of the magnetic field applied we observe the coupling of the qubits. The coupling strength agrees well with calculations of the mutual inductance

    Enterobacter cloacae Outbreak and Emergence of Quinolone Resistance Gene in Dutch Hospital

    Get PDF
    Plasmid-mediated qnrA1 is an emerging resistance trait

    Tuning the Gap of a Superconducting Flux Qubit

    Full text link
    We experimentally demonstrate the in situ tunability of the minimum energy splitting (gap) of a superconducting flux qubit by means of an additional flux loop. Pulses applied via a local control line allow us to tune the gap over a range of several GHz on a nanosecond timescale. The strong flux sensitivity of the gap (up to 0.7 GHz/mPhi_0) opens up the possibility to create different types of tunable couplings that are effective at the degeneracy point of the qubit. We investigate the dependence of the relaxation time and the Rabi frequency on the qubit gap.Comment: submitted to PRL, 4 pages, 5 figure

    Evolution in Quantum Leaps: Multiple Combinatorial Transfers of HPI and Other Genetic Modules in Enterobacteriaceae

    Get PDF
    Horizontal gene transfer is a key step in the evolution of Enterobacteriaceae. By acquiring virulence determinants of foreign origin, commensals can evolve into pathogens. In Enterobacteriaceae, horizontal transfer of these virulence determinants is largely dependent on transfer by plasmids, phages, genomic islands (GIs) and genomic modules (GMs). The High Pathogenicity Island (HPI) is a GI encoding virulence genes that can be transferred between different Enterobacteriaceae. We investigated the HPI because it was present in an Enterobacter hormaechei outbreak strain (EHOS). Genome sequence analysis showed that the EHOS contained an integration site for mobile elements and harbored two GIs and three putative GMs, including a new variant of the HPI (HPI-ICEEh1). We demonstrate, for the first time, that combinatorial transfers of GIs and GMs between Enterobacter cloacae complex isolates must have occurred. Furthermore, the excision and circularization of several combinations of the GIs and GMs was demonstrated. Because of its flexibility, the multiple integration site of mobile DNA can be considered an integration hotspot (IHS) that increases the genomic plasticity of the bacterium. Multiple combinatorial transfers of diverse combinations of the HPI and other genomic elements among Enterobacteriaceae may accelerate the generation of new pathogenic strains

    Yersiniabactin Reduces the Respiratory Oxidative Stress Response of Innate Immune Cells

    Get PDF
    Enterobacteriaceae that contain the High Pathogenicity Island (HPI), which encodes the siderophore yersiniabactin, display increased virulence. This increased virulence may be explained by the increased iron scavenging of the bacteria, which would both enhance bacterial growth and limit the availability of iron to cells of the innate immune system, which require iron to catalyze the Haber-Weiss reaction that produces hydroxyl radicals. In this study, we show that yersiniabactin increases bacterial growth when iron-saturated lactoferrin is the main iron source. This suggests that yersiniabactin provides bacteria with additional iron from saturated lactoferrin during infection. Furthermore, the production of ROS by polymorphonuclear leukocytes, monocytes, and a mouse macrophage cell line is blocked by yersiniabactin, as yersiniabactin reduces iron availability to the cells. Importantly, iron functions as a catalyst during the Haber-Weiss reaction, which generates hydroxyl radicals. While the physiologic role of the Haber-Weiss reaction in the production of hydroxyl radicals has been controversial, the siderophores yersiniabactin, aerobactin, and deferoxamine and the iron-chelator deferiprone also reduce ROS production in activated innate immune cells. This suggests that this reaction takes place under physiological conditions. Of the tested iron chelators, yersiniabactin was the most effective in reducing the ROS production in the tested innate immune cells. The likely decreased bacterial killing by innate immune cells resulting from the reduced production of hydroxyl radicals may explain why the HPI-containing Enterobacteriaceae are more virulent. This model centered on the reduced killing capacity of innate immune cells, which is indirectly caused by yersiniabactin, is in agreement with the observation that the highly pathogenic group of Yersinia is more lethal than the weakly pathogenic and the non-pathogenic group

    Citrate confers less filter-induced complement activation and neutrophil degranulation than heparin when used for anticoagulation during continuous venovenous haemofiltration in critically ill patients

    Get PDF
    Background: During continuous venovenous haemofiltration (CVVH), regional anticoagulation with citrate may be superior to heparin in terms of biocompatibility, since heparin as opposed to citrate may activate complement (reflected by circulating C5a) and induce neutrophil degranulation in the filter and myeloperoxidase (MPO) release from endothelium. Methods. No anticoagulation (n = 13), unfractionated heparin (n = 8) and trisodium citrate (n = 17) regimens during CVVH were compared. Blood samples were collected pre- and postfilter; C5a, elastase and MPO were determined by ELISA. Additionally, C5a was also measured in the ultrafiltrate. Results: In the heparin group, there was C5a production across the filter which most decreased over time as compared to other groups (P = 0.007). There was also net production of elastase and MPO across the filter during heparin anticoagulation (P = 0.049 or lower), while production was minimal and absent in the no anticoagulation and citrate group, respectively. During heparin anticoagulation, plasma concentrations of MPO at the inlet increased in the first 10 minutes of CVVH (P = 0.024). Conclusion: Citrate confers less filter-induced, potentially harmful complement activation and neutrophil degranulation and less endothelial activation than heparin when used for anticoagulation during continuous venovenous haemofiltration in critically ill patients

    Genomic Diversity within the Enterobacter cloacae Complex

    Get PDF
    Background: Isolates of the Enterobacter cloacae complex have been increasingly isolated as nosocomial pathogens, but phenotypic identification of the E. cloacae complex is unreliable and irreproducible. Identification of species based on currently available genotyping tools is already superior to phenotypic identification, but the taxonomy of isolates belonging to this complex is cumbersome. Methodolgy/Principal Findings: This study shows that multilocus sequence analysis and comparative genomic hybridization based on a mixed genome array is a powerful method for studying species assignment within the E. cloacae complex. The E. cloacae complex is shown to be evolutionarily divided into two clades that are genetically distinct from each other. The younger first clade is genetically more homogenous, contains the Enterobacter hormaechei species and is the most frequently cultured Enterobacter species in hospitals. The second and older clade consists of several (sub)species that are genetically more heterogonous. Genetic markers were identified that could discriminate between the two clades and cluster 1. Conclusions/Significance: Based on genomic differences it is concluded that some previously defined (clonal and heterogenic) (sub)species of the E. cloacae complex have to be redefined because of disagreements with known or proposed nomenclature. However, further improved identification of the redefined species will be possible based on novel markers presented here. © 2008 Paauw et al. Chemicals / CAS: Bacterial Proteins; DNA, Bacteria

    The plasma level and biomarker value of neutrophil gelatinase-associated lipocalin in critically ill patients with acute kidney injury are not affected by continuous venovenous hemofiltration and anticoagulation applied

    Get PDF
    Introduction: Neutrophil gelatinase-associated lipocalin (NGAL) is a biomarker of acute kidney injury (AKI), and levels reflect severity of disease in critically ill patients. However, continuous venovenous hemofiltration (CVVH) may affect plasma levels by clearance or release of NGAL by activated neutrophils in the filter, dependent on the anticoagulation regimen applied. We therefore studied handling of NGAL by CVVH in patients with AKI.Methods: Immediately before initiation of CVVH, prefilter blood was drawn. After 10, 60, 180, and 720 minutes of CVVH, samples were collected from pre- and postfilter (in- and outlet) blood and ultrafiltrate. CVVH with the following anticoagulation regimens was studied: no anticoagulation in case of a high bleeding tendency (n = 13), unfractionated heparin (n = 8), or trisodium citrate (n = 21). NGAL levels were determined with enzyme-linked immunosorbent assay (ELISA).Results: Concentrations of NGAL at inlet and outlet were similar, and concentrations did not change over time in any of the anticoagulation groups; thus no net removal or production of NGAL occurred. Concentrations of NGAL at inlet correlated with disease severity at initiation of CVVH and at the end of a CVVH run. Concentrations of NGAL in the ultrafiltrate were lower with citrate-based CVVH (P = 0.03) and decreased over time, irrespective of anticoagulation administered (P < 0.001). The sieving coefficient and clearance of NGAL were low and decreased over time (P < 0.001).Conclusions: The plasma level and biomarker value of NGAL in critically ill patients with AKI are not affected by CVVH, because clearance by the filter was low. Furthermore, no evidence exists for intrafilter release of NGAL by neutrophils, irrespective of the anticoagulation method applied
    corecore