100,981 research outputs found

    Quantum interference in nested d-wave superconductors: a real-space perspective

    Full text link
    We study the local density of states around potential scatterers in d-wave superconductors, and show that quantum interference between impurity states is not negligible for experimentally relevant impurity concentrations. The two impurity model is used as a paradigm to understand these effects analytically and in interpreting numerical solutions of the Bogoliubov-de Gennes equations on fully disordered systems. We focus primarily on the globally particle-hole symmetric model which has been the subject of considerable controversy, and give evidence that a zero-energy delta function exists in the DOS. The anomalous spectral weight at zero energy is seen to arise from resonant impurity states belonging to a particular sublattice, exactly as in the 2-impurity version of this model. We discuss the implications of these findings for realistic models of the cuprates.Comment: 12 pages, 10 figs, submitted to Phys. Rev.

    Two impurities in a d-wave superconductor:local density of states

    Full text link
    We study the problem of two local potential scatterers in a d-wave superconductor, and show how quasiparticle bound state wave functions interfere. Each single-impurity electron and hole resonance energy is in general split in the presence of a second impurity into two, corresponding to one even parity and one odd parity state. We calculate the local density of states (LDOS), and argue that scanning tunneling microscopy (STM) measurements should be capable of extracting information about the Green's function in the pure system by a systematic study of 2-impurity configurations. In some configurations highly localized, long-lived states are predicted. We discuss the effects of realistic band structures, and how 2-impurity STM measurements could help distinguish between current explanations of LDOS impurity spectra in the BSCCO-2212 system.Comment: 16 pages,21 figure,New Version to be Published on P.R.

    Formation and Stability of Cellular Carbon Foam Structures:An {\em Ab Initio} Study

    Full text link
    We use ab initio density functional calculations to study the formation and structural as well as thermal stability of cellular foam-like carbon nanostructures. These systems with a mixed sp2/sp3sp^2/sp^3 bonding character may be viewed as bundles of carbon nanotubes fused to a rigid contiguous 3D honeycomb structure that can be compressed more easily by reducing the symmetry of the honeycombs. The foam may accommodate the same type of defects as graphene, and its surface may be be stabilized by terminating caps. We postulate that the foam may form under non-equilibrium conditions near grain boundaries of a carbon-saturated metal surface

    Topography of Spin Liquids on a Triangular Lattice

    Full text link
    Spin systems with frustrated anisotropic interactions are of significant interest due to possible exotic ground states. We have explored their phase diagram on a nearest-neighbor triangular lattice using the density-matrix renormalization group and mapped out the topography of the region that can harbor a spin liquid. We find that this spin-liquid phase is continuously connected to a previously discovered spin-liquid phase of the isotropic J1 ⁣ ⁣J2J_1\!-\!J_2 model. The two limits show nearly identical spin correlations, making the case that their respective spin liquids are isomorphic to each other.Comment: Accepted to PRL; 5 p., 11+ p. supplemental; main text is longer than the accepted versio

    Disorder-Induced Mimicry of a Spin Liquid in YbMgGaO4_4

    Full text link
    We suggest that a randomization of the pseudo-dipolar interaction in the spin-orbit-generated low-energy Hamiltonian of YbMgGaO4_4 due to an inhomogeneous charge environment from a natural mixing of Mg2+^{2+} and Ga3+^{3+} can give rise to orientational spin disorder and mimic a spin-liquid-like state. In the absence of such quenched disorder, 1/S1/S and density matrix renormalization group calculations both show robust ordered states for the physically relevant phases of the model. Our scenario is consistent with the available experimental data and further experiments are proposed to support it.Comment: 5+ main text, 7+ supplemental, text asymptotically close to PR

    Effects of Minijets on Hadronic Spectra and Azimuthal Harmonics in Au-Au Collisions at 200 GeV

    Full text link
    The production of hadrons in heavy-ion collisions at RHIC in the low transverse-momentum (pTp_T) region is investigated in the recombination model with emphasis on the effects of minijets on the azimuthal anisotropy. Since the study is mainly on the hadronization of partons at late time, the fluid picture is not used to trace the evolution of the system. The inclusive distributions at low pTp_T are determined as the recombination products of thermal partons. The pTp_T dependencies of both pion and proton have a common exponential factor apart from other dissimilar kinematic and resonance factors, because they are inherited from the same pool of thermal partons. Instead of the usual description based on hydrodynamics, the azimuthal anisotropy of the produced hadrons is explained as the consequence of the effects of minijets, either indirectly through the recombination of enhanced thermal partons in the vicinity of the trajectories of the semihard partons, or directly through thermal-shower recombination. Although our investigation is focussed on the single-particle distribution at midrapidity, we give reasons why a component in that distribution can be identified with the ridge, which together with the second harmonic v2v_2 is due to the semihard partons created near the medium surface that lead to calculable anisotropy in ϕ\phi. It is shown that the higher azimuthal harmonics, vnv_n, can also be well reproduced without reference to flow. The pTp_T and centrality dependencies of the higher harmonics are prescribed by the interplay between TT and TS recombination components. The implication of the success of this drastic departure from the conventional approach is discussed.Comment: 28 pages and 8 figures, more discussions and references adde

    Kawasaki-type Dynamics: Diffusion in the kinetic Gaussian model

    Full text link
    In this article, we retain the basic idea and at the same time generalize Kawasaki's dynamics, spin-pair exchange mechanism, to spin-pair redistribution mechanism, and present a normalized redistribution probability. This serves to unite various order-parameter-conserved processes in microscopic, place them under the control of a universal mechanism and provide the basis for further treatment. As an example of the applications, we treated the kinetic Gaussian model and obtained exact diffusion equation. We observed critical slowing down near the critical point and found that, the critical dynamic exponent z=1/nu=2 is independent of space dimensionality and the assumed mechanism, whether Glauber-type or Kawasaki-type.Comment: accepted for publication in PR

    Continuous quantum phase transition in a Kondo lattice model

    Full text link
    We study the magnetic quantum phase transition in an anisotropic Kondo lattice model. The dynamical competition between the RKKY and Kondo interactions is treated using an extended dynamic mean field theory (EDMFT) appropriate for both the antiferromagnetic and paramagnetic phases. A quantum Monte Carlo approach is used, which is able to reach very low temperatures, of the order of 1% of the bare Kondo scale. We find that the finite-temperature magnetic transition, which occurs for sufficiently large RKKY interactions, is first order. The extrapolated zero-temperature magnetic transition, on the other hand, is continuous and locally critical.Comment: 4 pages, 4 figures; updated, to appear in PR
    corecore