932 research outputs found
The matrix Hamiltonian for hadrons and the role of negative-energy components
The world-line (Fock-Feynman-Schwinger) representation is used for quarks in
arbitrary (vacuum and valence gluon) field to construct the relativistic
Hamiltonian. After averaging the Green's function of the white system
over gluon fields one obtains the relativistic Hamiltonian, which is matrix in
spin indices and contains both positive and negative quark energies. The role
of the latter is studied in the example of the heavy-light meson and the
standard einbein technic is extended to the case of the matrix Hamiltonian.
Comparison with the Dirac equation shows a good agreement of the results. For
arbitrary system the nondiagonal matrix Hamiltonian components are
calculated through hyperfine interaction terms. A general discussion of the
role of negative energy components is given in conclusion.Comment: 29 pages, no figure
Dynamics of confined gluons
Propagation of gluons in the confining vacuum is studied in the framework of
the background perturbation theory, where nonperturbative background contains
confining correlators. Two settings of the problem are considered. In the first
the confined gluon is evolving in time together with static quark and antiquark
forming the one-gluon static hybrid. The hybrid spectrum is calculated in terms
of string tension and is in agreement with earlier analytic and lattice
calculations. In the second setting the confined gluon is exchanged between
quarks and the gluon Green's function is calculated, giving rise to the Coulomb
potential modified at large distances. The resulting screening radius of 0.5 fm
presents a serious problem when confronting with lattice and experimental data.
A possible solution of this discrepancy is discussed.Comment: 17 pages, no figures; v2: minor numerical changes in the tabl
The static interaction at small distances and OPE violating terms
Nonperturbative contribution to the one-gluon exchange produces a universal
linear term in the static potential at small distances . Its role in the resolution of long--standing
discrepancies in the fine splitting of heavy quarkonia and improved agreement
with lattice data for static potentials is discussed, as well as implications
for OPE violating terms in other processes.Comment: Latex, 5 pages, to be published in JETP Let
Glueballs, gluerings and gluestars in the d=2+1 SU(N) gauge theory
The 3d gluodynamics which governs the large T quark gluon plasma is studied
in the framework of the field correlator method. Field correlators and spacial
string tension are derived through the gluelump Green's functions. The glueball
spectrum is calculated both in C=-1 as well as in C=+1 sectors, and multigluon
bound states in the form of "gluon rings" and "gluon stars" are computed
explicitly. Good overall agreement with available lattice data is observed.Comment: 19 page
Decay constants of the heavy-light mesons from the field correlator method
Meson Green's functions and decay constants in different
channels are calculated using the Field Correlator Method. Both,
spectrum and , appear to be expressed only through universal
constants: the string tension , , and the pole quark masses.
For the -wave states the calculated masses agree with the experimental
numbers within MeV. For the and mesons the values of are equal to 210(10) and 260(10) MeV, respectively, and their ratio
=1.24(3) agrees with recent CLEO experiment. The values MeV are obtained for the , , and mesons
with the ratio =1.19(2) and =1.14(2). The decay constants
for the first radial excitations as well as the decay constants
in the vector channel are also calculated. The difference of
about 20% between and , and directly follows
from our analytical formulas.Comment: 37 pages, 10 tables, RevTeX
Current correlators in QCD: OPE versus large distance dynamics
We analyse the structure of current-current correlators in coordinate space
in large limit when the corresponding spectral density takes the form of
an infinite sum over hadron poles. The latter are computed in the QCD string
model with quarks at the ends, including the lowest states, for all channels.
The corresponding correlators demonstrate reasonable qualitative agreement with
the lattice data without any additional fits. Different issues concerning the
structure of the short distance OPE are discussed.Comment: LaTeX, 25 pages, 13 figure
Nonperturbative mechanisms of strong decays in QCD
Three decay mechanisms are derived systematically from the QCD Lagrangian
using the field correlator method. Resulting operators contain no arbitrary
parameters and depend only on characteristics of field correlators known from
lattice and analytic calculations. When compared to existing phenomenological
models, parameters are in good agreement with the corresponding fitted values.Comment: 12 pages, latex2
Dynamics of quark-gluon plasma from Field correlators
It is argued that strong dynamics in the quark-gluon plasma and bound states
of quarks and gluons is mostly due to nonperturbative effects described by
field correlators. The emphasis in the paper is made on two explicit
calculations of these effects from the first principles: one analytic using
gluelump Green's functions and another using independent lattice data on
correlators. The resulting hadron spectra are investigated in the range T_c < T
< 2T_c. The spectra of charmonia, bottomonia, light s-sbar mesons, glueballs
and quark-gluon states calculated numerically are in general agreement with
lattice MEM data. The possible role of these bound states in the thermodynamics
of quark-gluon plasma is discussed.Comment: Revised version with new comments and references and corrected tables
VII-IX; 34 pages + 6 figure
Chiral Symmetry Breaking with Scalar Confinement
Spontaneous chiral symmetry breaking is accepted to occur in low energy
hadronic physics, resulting in the several successful theorems of PCAC. On the
other hand scalar confinement is suggested both by the spectroscopy of hadrons
and by the string picture of confinement. However these two evidences are
apparently conflicting, because chiral symmetry breaking requires a chiral
invariant coupling to the quarks, say a vector coupling like in QCD. Here we
reformulate the coupling of the quarks to the string, and we are able to comply
with chiral symmetry breaking, using scalar confinement. The results are quite
encouraging.Comment: 4 pages, 5 figures, contribution to the XXXVIIIth Rencontres de
Moriond QCD and High Energy Hadronic Interaction
Baryon magnetic moments in the effective quark Lagrangian approach
An effective quark Lagrangian is derived from first principles through
bilocal gluon field correlators. It is used to write down equations for
baryons, containing both perturbative and nonperturbative fields. As a result
one obtains magnetic moments of octet and decuplet baryons without introduction
of constituent quark masses and using only string tension as an input. Magnetic
moments come out on average in reasonable agreement with experiment, except for
nucleons and . The predictions for the proton and neutron are shown
to be in close agreement with the empirical values once we choose the string
tension such to yield the proper nucleon mass. Pionic corrections to the
nucleon magnetic moments have been estimated. In particular, the total result
of the two-body current contributions are found to be small. Inclusion of the
anomalous magnetic moment contributions from pion and kaon loops leads to an
improvement of the predictions.Comment: 24 pages Revte
- …