20,434 research outputs found

    Let Your CyberAlter Ego Share Information and Manage Spam

    Full text link
    Almost all of us have multiple cyberspace identities, and these {\em cyber}alter egos are networked together to form a vast cyberspace social network. This network is distinct from the world-wide-web (WWW), which is being queried and mined to the tune of billions of dollars everyday, and until recently, has gone largely unexplored. Empirically, the cyberspace social networks have been found to possess many of the same complex features that characterize its real counterparts, including scale-free degree distributions, low diameter, and extensive connectivity. We show that these topological features make the latent networks particularly suitable for explorations and management via local-only messaging protocols. {\em Cyber}alter egos can communicate via their direct links (i.e., using only their own address books) and set up a highly decentralized and scalable message passing network that can allow large-scale sharing of information and data. As one particular example of such collaborative systems, we provide a design of a spam filtering system, and our large-scale simulations show that the system achieves a spam detection rate close to 100%, while the false positive rate is kept around zero. This system has several advantages over other recent proposals (i) It uses an already existing network, created by the same social dynamics that govern our daily lives, and no dedicated peer-to-peer (P2P) systems or centralized server-based systems need be constructed; (ii) It utilizes a percolation search algorithm that makes the query-generated traffic scalable; (iii) The network has a built in trust system (just as in social networks) that can be used to thwart malicious attacks; iv) It can be implemented right now as a plugin to popular email programs, such as MS Outlook, Eudora, and Sendmail.Comment: 13 pages, 10 figure

    Evolution equations of curvature tensors along the hyperbolic geometric flow

    Full text link
    We consider the hyperbolic geometric flow ∂2∂t2g(t)=−2Ricg(t)\frac{\partial^2}{\partial t^2}g(t)=-2Ric_{g(t)} introduced by Kong and Liu [KL]. When the Riemannian metric evolve, then so does its curvature. Using the techniques and ideas of S.Brendle [Br,BS], we derive evolution equations for the Levi-Civita connection and the curvature tensors along the hyperbolic geometric flow. The method and results are computed and written in global tensor form, different from the local normal coordinate method in [DKL1]. In addition, we further show that any solution to the hyperbolic geometric flow that develops a singularity in finite time has unbounded Ricci curvature.Comment: 15 page

    HySIA: Tool for Simulating and Monitoring Hybrid Automata Based on Interval Analysis

    Full text link
    We present HySIA: a reliable runtime verification tool for nonlinear hybrid automata (HA) and signal temporal logic (STL) properties. HySIA simulates an HA with interval analysis techniques so that a trajectory is enclosed sharply within a set of intervals. Then, HySIA computes whether the simulated trajectory satisfies a given STL property; the computation is performed again with interval analysis to achieve reliability. Simulation and verification using HySIA are demonstrated through several example HA and STL formulas.Comment: Appeared in RV'17; the final publication is available at Springe

    Geologic and tectonic setting of the MARK area

    Get PDF

    Gamma-ray emission from the globular clusters Liller 1, M80, NGC 6139, NGC 6541, NGC 6624, and NGC 6752

    Get PDF
    Globular clusters (GCs) are emerging as a new class of gamma-ray emitters, thanks to the data obtained from the Fermi Gamma-ray Space Telescope. By now, eight GCs are known to emit gamma-rays at energies >100~MeV. Based on the stellar encounter rate of the GCs, we identify potential gamma-ray emitting GCs out of all known GCs that have not been studied in details before. In this paper, we report the discovery of a number of new gamma-ray GCs: Liller 1, NGC 6624, and NGC 6752, and evidence for gamma-ray emission from M80, NGC 6139, and NGC 6541, in which gamma-rays were found within the GC tidal radius. With one of the highest metallicity among all GCs in the Milky Way, the gamma-ray luminosity of Liller 1 is found to be the highest of all known gamma-ray GCs. In addition, we confirm a previous report of significant gamma-ray emitting region next to NGC 6441. We briefly discuss the observed offset of gamma-rays from some GC cores. The increasing number of known gamma-ray GCs at distances out to ~10 kpc is important for us to understand the gamma-ray emitting mechanism and provides an alternative probe to the underlying millisecond pulsar populations of the GCs.Comment: 22 pages, 7 figures, 2 tables; ApJ, in pres
    • 

    corecore