20 research outputs found

    A comparison between modelled and measured mixing-layer height over Munich

    No full text
    An attempt is made to correlate the mixing heights, derived from ceilometer and Sodar measurements, to those simulated by different atmospheric boundary-layer parameterization schemes. The comparison is performed at two sites (one suburban and one rural) close to Munich, Germany for two spring and two winter days. It is found that, under convective conditions, the mixing height determined, by both Sodar and ceilometer, corresponds to the middle or the top of the entrainment zone, respectively, as calculated from the eddy-viscosity profiles. Under stable conditions, the measured mixing height is related to the height where eddy viscosities attain their minimum values (Sodar) or to the height of residual mechanical turbulence (ceilometer). During a foehn case with weak turbulence, the measured mixing height from both Sodar and ceilometer is better inferred by considering the eddy-viscosity profiles during daytime and the height of the low-level jet during nighttime. © Springer Science+Business Media B.V. 2009

    Comparative evaluation of minocycline susceptibility testing methods in carbapenem-resistant Acinetobacter baumannii

    No full text
    In this study, the performance of two commonly used routine antimicrobial susceptibility testing methods, the automated VITEK®2 system and Etest (bioMérieux, Marcy-l'Étoile, France), was compared with the standard broth microdilution (BMD) method on 87 multidrug- and carbapenem-resistant Acinetobacter baumannii clinical isolates. Clinical and Laboratory Standards Institute (CLSI) 2015 breakpoints (susceptible, ≤4 mg/L; intermediate, 8 mg/L; and resistant, ≥16 mg/L) were used. Minocycline showed excellent activity, with 94.3% of isolates susceptible by BMD (VITEK®2, 73.6%; Etest, 63.2%). The MIC50/90 values (minimum inhibitory concentrations required to inhibit 50% and 90% of the isolates, respectively) were as follows: BMD, 1/4 mg/L; VITEK®2, ≤1/8 mg/L; and Etest, 4/16 mg/L. Etest produced 14.9% major/20.7% minor errors and VITEK®2 produced 3.4% major/17.2% minor errors. These data indicate that VITEK®2 may be more reliable than Etest for routine susceptibility testing of minocycline for A. baumannii isolates. As both VITEK®2 and Etest produced higher minocycline MICs compared with the reference method, BMD may be needed to validate the categorisation of carbapenem-resistant A. baumannii by these assays as minocycline non-susceptible. © 2016 Elsevier B.V. and International Society of Chemotherap

    New particle formation in the southern Aegean Sea during the Etesians: importance for CCN production and cloud droplet number

    No full text
    This study examines how new particle formation (NPF) in the eastern Mediterranean in summer affects CCN (cloud condensation nuclei) concentrations and cloud droplet formation. For this, the concentration and size distribution of submicron aerosol particles, along with the concentration of trace gases and meteorological variables, were studied over the central (Santorini) and southern Aegean Sea (Finokalia, Crete) from 15 to 28 July 2013, a period that includes Etesian events and moderate northern surface winds. Particle nucleation bursts were recorded during the Etesian flow at both stations, with those observed at Santorini reaching up to 1.5  ×  104 particles cm−3; the fraction of nucleation-mode particles over Crete was relatively diminished, but a higher number of Aitken-mode particles were observed as a result of aging. Aerosol and photochemical pollutants covaried throughout the measurement period; lower concentrations were observed during the period of Etesian flow (e.g., 43–70 ppbv for ozone and 1.5–5.7 µg m−3 for sulfate) but were substantially enhanced during the period of moderate surface winds (i.e., increase of up to 32 for ozone and 140 % for sulfate). We find that NPF can double CCN number (at 0.1 % supersaturation), but the resulting strong competition for water vapor in cloudy updrafts decreases maximum supersaturation by 14 % and augments the potential droplet number only by 12 %. Therefore, although NPF events may strongly elevate CCN numbers, the relative impacts on cloud droplet number (compared to pre-event levels) is eventually limited by water vapor availability and depends on the prevailing cloud formation dynamics and the aerosol levels associated with the background of the region

    New particle formation in the southern Aegean Sea during the Etesians: Importance for CCN production and cloud droplet number

    No full text
    This study examines how new particle formation (NPF) in the eastern Mediterranean in summer affects CCN (cloud condensation nuclei) concentrations and cloud droplet formation. For this, the concentration and size distribution of submicron aerosol particles, along with the concentration of trace gases and meteorological variables, were studied over the central (Santorini) and southern Aegean Sea (Finokalia, Crete) from 15 to 28 July 2013, a period that includes Etesian events and moderate northern surface winds. Particle nucleation bursts were recorded during the Etesian flow at both stations, with those observed at Santorini reaching up to 1.5 × 104 particles cm-3; the fraction of nucleation-mode particles over Crete was relatively diminished, but a higher number of Aitken-mode particles were observed as a result of aging. Aerosol and photochemical pollutants covaried throughout the measurement period; lower concentrations were observed during the period of Etesian flow (e.g., 43-70 ppbv for ozone and 1.5-5.7 μg m-3 for sulfate) but were substantially enhanced during the period of moderate surface winds (i.e., increase of up to 32 for ozone and 140 % for sulfate). We find that NPF can double CCN number (at 0.1% supersaturation), but the resulting strong competition for water vapor in cloudy updrafts decreases maximum supersaturation by 14 % and augments the potential droplet number only by 12 %. Therefore, although NPF events may strongly elevate CCN numbers, the relative impacts on cloud droplet number (compared to pre-event levels) is eventually limited by water vapor availability and depends on the prevailing cloud formation dynamics and the aerosol levels associated with the background of the region. © Author(s) 2017

    New particle formation in the southern Aegean Sea during the Etesians: Importance for CCN production and cloud droplet number

    No full text
    This study examines how new particle formation (NPF) in the eastern Mediterranean in summer affects CCN (cloud condensation nuclei) concentrations and cloud droplet formation. For this, the concentration and size distribution of submicron aerosol particles, along with the concentration of trace gases and meteorological variables, were studied over the central (Santorini) and southern Aegean Sea (Finokalia, Crete) from 15 to 28 July 2013, a period that includes Etesian events and moderate northern surface winds. Particle nucleation bursts were recorded during the Etesian flow at both stations, with those observed at Santorini reaching up to 1.5 × 104 particles cm-3; the fraction of nucleation-mode particles over Crete was relatively diminished, but a higher number of Aitken-mode particles were observed as a result of aging. Aerosol and photochemical pollutants covaried throughout the measurement period; lower concentrations were observed during the period of Etesian flow (e.g., 43-70 ppbv for ozone and 1.5-5.7 μg m-3 for sulfate) but were substantially enhanced during the period of moderate surface winds (i.e., increase of up to 32 for ozone and 140 % for sulfate). We find that NPF can double CCN number (at 0.1% supersaturation), but the resulting strong competition for water vapor in cloudy updrafts decreases maximum supersaturation by 14 % and augments the potential droplet number only by 12 %. Therefore, although NPF events may strongly elevate CCN numbers, the relative impacts on cloud droplet number (compared to pre-event levels) is eventually limited by water vapor availability and depends on the prevailing cloud formation dynamics and the aerosol levels associated with the background of the region. © Author(s) 2017
    corecore