34 research outputs found

    Моделирование поверхностной закалки с использованием сканирующего оптоволоконного лазера

    Get PDF
    An analysis of process of scanning laser processing is made. The possibility of use of program and changeable power of a laser radiation in the course of scanning is shown. A mathematical model of process of training is developed by the scanning laser radiation. The model considers parameters of reciprocation of a laser beam and headway of a detail. Calculation of the temperature profile arising at laser training with a constant power and with change of power of a laser radiation depending on the provision of a laser beam at its relative movement is executed. Implementation of laser training with a program and changeable power of radiation in the course of scanning allows lowering a metabolic cost by 25 % with preservation of the given geometry of a zone of hardening. Results of laser training of a surface of steel 45 with the gas laser and the process unit on the basis of the fiberoptic laser with power up to 2 kW are presented. The volume, hardened in unit of time, was taken for an indicator of efficiency. Use of radiation of the fiber-optic laser provides increase in efficiency of training by 3–5 times in comparison with use of radiation of CO2 laser of the same power. The gained effect is explained by change of conditions of interaction of radiation with the surface of metal at change by an order of a radiation wavelength and also by change of balance distribution of heat in a zone of influence of a laser beam. Taking into account higher efficiency of fiber-optic lasers in comparison with gas, the energy efficiency of use of fiber-optic lasers for the surface strengthening is 9–15 times higher than when using CO2 lasers.Показана возможность управления температурными полями в процессе сканирующей лазерной обработки оптоволоконным лазером. Разработана математическая модель процесса закалки сканирующим лазерным излучением при возвратно-поступательном движении лазерного луча и поступательном движении детали. Выполнен расчет температурного поля, возникающего при лазерной закалке с постоянной мощностью и с изменением мощности лазерного излучения в зависимости от положения лазерного луча при его относительном перемещении. В результате математического моделирования процесса лазерной закалки при изменении мощности лазерного излучения в зависимости от положения лазерного луча установлено, что применение сканирующей системы с программноизменяемой мощностью излучения позволяет снизить на 25 % энергетические затраты с сохранением заданной геометрии зоны упрочнения. Представлены результаты лазерной закалки поверхности стали 45 на газовом лазере 1,2 кВт и технологической установке на базе оптоволоконного лазера мощностью до 2 кВт, оснащенной сканирующей системой. За показатель производительности был принят объем закаленного материала в единицу времени. Анализ полученных результатов показывает, что использование излучения оптоволоконного лазера обеспечивает повышение производительности закалки в 3–5 раз по сравнению с применением излучения СО2 -лазера той же мощности. Полученный эффект объясняется изменением условий взаимодействия излучения с поверхностью металла при изменении длины волны излучения, а также изменением баланса распределения тепла в зоне воздействия лазерного луча. С учетом более высокого КПД энергоэффективность использования оптоволоконных лазеров для поверхностного упрочнения в 9–15 раз выше, чем при использовании СО2 -лазеров

    ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ ПРИ МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИИ ПРОЦЕССА ОБРАБОТКИ

    Get PDF
    The space laser emission energy distribution of different continuous operation settings depends from many factors, first on the settings design. For more accurate describing of multimode laser emission energy distribution intensity the experimental and theoretic model, which based on experimental laser emission distribution shift presentation with given accuracy rating in superposition basic function form, is proposed. This model provides the approximation error only 2,2 percent as compared with 24,6 % and 61 % for uniform and Gauss approximation accordingly. The proposed model usage lets more accurate take into consideration the laser emission and working surface interaction peculiarity, increases temperature fields calculation accuracy for mathematic modeling of laser treatment processes. The method of experimental laser emission energy distribution studying for given source and mathematic apparatus for calculation of laser emission energy distribution intensity parameters depended from the distance in radial direction on surface heating zone are shown.Пространственное распределение интенсивности излучения в различных установках лазерного излучения непрерывного действия зависит от многих факторов, в первую очередь от конструктивных особенностей установок. Для повышения точности описания распределения интенсивности многомодового лазерного излучения предлагается экспериментально-теоретическая модель, в основу которой положено построение сдвигового представления экспериментального распределения интенсивности лазерного излучения с любой наперед заданной степенью точности, в виде суперпозиции базисных функций. Данная модель обеспечивает ошибку аппроксимации всего 2,2 % по сравнению с 24,6 % и 61 % соответственно для равномерной и гауссовской аппроксимаций. Использование представленной модели позволит более точно учесть особенности взаимодействия излучения с обрабатываемой поверхности, повысить точность результатов расчета температурного поля при математическом моделировании процесса лазерной обработки. Представлены методика экспериментального исследования распределения интенсивности лазерного излучения для конкретного источника и математический аппарат для вычисления параметров распределения по пятну нагрева интенсивности лазерного излучения в зависимости от расстояния в радиальном направлении

    Retrospective analysis and current state of the improving qualification of pharmacists on quality questions of medicines in Shupyk NMAPE

    Get PDF
    To date, one of the advanced educational and research centers of Kiev and Ukraine, which is the improving qualification of pharmacists on quality questions of medicines, is the Department of Quality Control and Standardization of Medicines of Shupyk National Medical Academy of Post-Graduate Education (NMAPE). The aim of the work is to analyze the historical stages of formation and development of the Department of Quality Control and Standardization of Medicines of Shupyk NMAPE. The materials of the research are: archival and current documentation of the department, scientific publications, encyclopedic reference materials. Studies were conducted using methods: content analysis, historical documentary, generalization and systematization of historical data. In this work a retrospective analysis was performed and current state of activity of the Department of Quality Control and Standardization of Medicines of Shupyk NMAPE was considered. The basic stages of formation and historical development of the department during 1938 to 2018 are determined. The contribution to the development of pharmaceutical education and science of professors (prof. Ya.A. Fialkov, N.P. Maksyutina, O.M Gritsenko, N.O. Vetiutneva, etc.) was noted. The educational cycles, taught at the department, are shown, namely: specialization cycles, internships, pre-certification training in the specialties «Analytical Control Pharmacy», «General Pharmacy»; thematic improvement cycles on topical issues of pharmacy, quality assurance and prevention of falsification of medicines, functioning of quality systems of pharmacies (for pharmacists); cycles of improvement of assistant pharmacists; thematic improvement cycles on the scientific basis of phytotherapy and the use of modern medicines based on active ingredients of natural origin (for physicians). The basis of educational-methodical and scientific production of the department is described. The main areas of the scientific activity of the department are described, covering the following areas: development of methods for the investigation of complex synthetic compounds, methods for express analysis of extemporal multicomponent medicines, methods for quality control the of phytotherapeutic and homeopathic medicines; study of the composition and intermolecular interaction of biologically active compounds in plants and phytopreparations; synthesis and creation of new medicines and dietary supplements; study of the properties of crown compounds; study of the interaction of auxiliary substances with active ingredients; research on increasing the solubility of difficult soluble substances; substantiation of methodological and organizational-methodical principles of quality assurance of medicines at stages of wholesale, retail sale and medical use, etc. Analysis of the activities of the Department of Quality Control and Standardization of Medicines of Shupyk NMAPE during 1938 to 2018 testifies to its significant contribution and great potential for the development of pharmaceutical science and practice, in particular in the direction of the creation, standardization, assurance and control of quality of medicines and dietary supplements

    THE FEATURES OF LASER EMISSION ENERGY DISTRIBUTION AT MATHEMATIC MODELING OF WORKING PROCESS

    No full text
    The space laser emission energy distribution of different continuous operation settings depends from many factors, first on the settings design. For more accurate describing of multimode laser emission energy distribution intensity the experimental and theoretic model, which based on experimental laser emission distribution shift presentation with given accuracy rating in superposition basic function form, is proposed. This model provides the approximation error only 2,2 percent as compared with 24,6 % and 61 % for uniform and Gauss approximation accordingly. The proposed model usage lets more accurate take into consideration the laser emission and working surface interaction peculiarity, increases temperature fields calculation accuracy for mathematic modeling of laser treatment processes. The method of experimental laser emission energy distribution studying for given source and mathematic apparatus for calculation of laser emission energy distribution intensity parameters depended from the distance in radial direction on surface heating zone are shown
    corecore