171 research outputs found

    The Extent and Cause of the Pre-White Dwarf Instability Strip

    Get PDF
    One of the least understood aspects of white dwarf evolution is the process by which they are formed. We are aided, however, by the fact that many H- and He-deficient pre-white dwarfs (PWDs) are multiperiodic g-mode pulsators. Pulsations in PWDs provide a unique opportunity to probe their interiors, which are otherwise inaccesible to direct observation. Until now, however, the nature of the pulsation mechanism, the precise boundaries of the instability strip, and the mass distribution of the PWDs were complete mysteries. These problems must be addressed before we can apply knowledge of pulsating PWDs to improve understanding of white dwarf formation. This paper lays the groundwork for future theoretical investigations of these stars. In recent years, Whole Earth Telescope observations led to determination of mass and luminosity for the majority of the (non-central star) PWD pulsators. With these observations, we identify the common properties and trends PWDs exhibit as a class. We find that pulsators of low mass have higher luminosity, suggesting the range of instability is highly mass-dependent. The observed trend of decreasing periods with decreasing luminosity matches a decrease in the maximum (standing-wave) g-mode period across the instability strip. We show that the red edge can be caused by the lengthening of the driving timescale beyond the maximum sustainable period. This result is general for ionization-based driving mechanisms, and it explains the mass-dependence of the red edge. The observed form of the mass-dependence provides a vital starting point for future theoretical investigations of the driving mechanism. We also show that the blue edge probably remains undetected because of selection effects arising from rapid evolution.Comment: 40 pages, 6 figures, accepted by ApJ Oct 27, 199

    First observations of W Virginis stars with K2: detection of period doubling

    Get PDF
    We present the first analysis of W Vir stars observed by the Kepler space telescope in the K2 mission. Clear cycle-to-cycle variation were detected in the light curves of KT Sco and the globular cluster member M80-V1. While the variations in the former star seems to be irregular on the short time scale of the K2 data, the latter appears to experience period doubling in its pulsation. Ground-based colour data confirmed that both stars are W Vir-type pulsators, while a comparison with historical photometric time-series data revealed drastic period changes in both stars. For comparison we reexamine ground-based observations of W Vir, the prototype of the class, and conclude that it shows period doubling instead of mode beating. These results support the notion that nonlinear dynamics plays an important role in the pulsation of W Virginis-type stars.Comment: 8 pages, 7 figures, accepted for publication in MNRA

    Analysis of refill curve shape in ultrasound contrast agent studies

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135021/1/mp9534.pd

    Extended envelopes around Galactic Cepheids III. Y Oph and alpha Per from near-infrared interferometry with CHARA/FLUOR

    Full text link
    Unbiased angular diameter measurements are required for accurate distances to Cepheids using the interferometric Baade Wesselink method (IBWM). The precision of this technique is currently limited by interferometric measurements at the 1.5% level. At this level, the center-to-limb darkening (CLD) and the presence of circumstellar envelopes (CSE) seem to be the two main sources of bias. The observations we performed aim at improving our knowledge of the interferometric visibility profile of Cepheids. In particular, we assess the systematic presence of CSE around Cepheids in order determine accurate distances with the IBWM free from CSE biased angular diameters. We observed a Cepheid (Y Oph) for which the pulsation is well resolved and a non-pulsating yellow supergiant (alpha Per) using long-baseline near-infrared interferometry. We interpreted these data using a simple CSE model we previously developed. We found that our observations of alpha Per do not provide evidence for a CSE. The measured CLD is explained by an hydrostatic photospheric model. Our observations of Y Oph, when compared to smaller baseline measurements, suggest that it is surrounded by a CSE with similar characteristics to CSE found previously around other Cepheids. We have determined the distance to Y Oph to be d=491+/-18 pc. Additional evidence points toward the conclusion that most Cepheids are surrounded by faint CSE, detected by near infrared interferometry: after observing four Cepheids, all show evidence for a CSE. Our CSE non-detection around a non-pulsating supergiant in the instability strip, alpha Per, provides confidence in the detection technique and suggests a pulsation driven mass-loss mechanism for the Cepheids.Comment: accepted for publication in Ap

    Seismology of triple-mode classical Cepheids of the Large Magellanic Cloud

    Full text link
    We interpret the three periods detected in OGLE LMC Cepheids SC3-360128 and SC5-338399 as corresponding to the first three overtones of radial pulsations. This interpretation imposes stringent constraints on parameters of the stars and on their evolutionary status, which could only be the first crossing of the instability strip. Evolutionary models reproducing measured periods exist only in a restricted range of metallicities (Z=0.004-0.007). The models impose an upper limit on the extent of overshooting from the convective core. Absolute magnitude of each star is confined to a narrow interval. This allows to derive a new estimate of the distance to the LMC. We obtain m-M ranging from 18.34mag to 18.53mag, with a systematic difference between the two stars of about 0.13mag. The rates of period change predicted by the models are formally in conflict with the derived observational limits, though the uncertainities of measured dP/dt may be underestimated. If the discrepancy is confirmed, it would constitute a significant challenge to the stellar evolution theory.Comment: 9 pages, 2 figures, accepted for publication in A&
    corecore