2 research outputs found

    State estimation in quantum homodyne tomography with noisy data

    Get PDF
    In the framework of noisy quantum homodyne tomography with efficiency parameter 0<η≀10 < \eta \leq 1, we propose two estimators of a quantum state whose density matrix elements ρm,n\rho_{m,n} decrease like e−B(m+n)r/2e^{-B(m+n)^{r/ 2}}, for fixed known B>0B>0 and 0<r≀20<r\leq 2. The first procedure estimates the matrix coefficients by a projection method on the pattern functions (that we introduce here for 0<η≀1/20<\eta \leq 1/2), the second procedure is a kernel estimator of the associated Wigner function. We compute the convergence rates of these estimators, in L2\mathbb{L}_2 risk

    Minimax estimation of the Wigner function in quantum homodyne tomography with ideal detectors

    Get PDF
    We estimate the quantum state of a light beam from results of quantum homodyne measurements performed on identically prepared pulses. The state is represented through the Wigner function, a ``quasi-probability density'' on R2\mathbb{R}^{2} which may take negative values and must respect intrinsic positivity constraints imposed by quantum physics. The data consists of nn i.i.d. observations from a probability density equal to the Radon transform of the Wigner function. We construct an estimator for the Wigner function, and prove that it is minimax efficient for the pointwise risk over a class of infinitely differentiable functions. A similar result was previously derived by Cavalier in the context of positron emission tomography. Our work extends this result to the space of smooth Wigner functions, which is the relevant parameter space for quantum homodyne tomography.Comment: 15 page
    corecore