808 research outputs found

    Small intestinal mucosal cells in piglets fed with probiotic and zinc: a qualitative and quantitative microanatomical study

    Get PDF
    Background: Probiotics and zinc are commonly used and beneficial in pig production. This work aimed to assess the effects of probiotic and zinc on the mucosal cells of the small intestine in respect to digestive capacity and immunity in pre- and post-weaned piglets.Materials and methods: Eighteen Large White Yorkshire piglets were divided equally into control and treatment groups. The piglets were maintained in standard management conditions and were weaned at 28 days of age. The treatment group of piglets fed a mixture of probiotics orally at 1.25 × 109 CFU/day and zinc at 2000 ppm/day from birth to 10 days of age. At three different age-groups viz. day 20 (pre-weaning) and, day 30 and day 60 (post-weaning), the animals were sacrificed. For histomorphology, the tissue samples were processed and stained with Mayer’s haematoxylin and eosin for routine study, combined periodic acid-Schiff-Alcian blue for mucopolysaccharides and Masson-Hamperl argentaffin technique for argentaffin cells. The stained slides were observed under the microscope. The samples were processed as per the standard procedure for scanning and transmission electron microscopy. The statistical analysis of the data using the appropriate statistical tests was also conducted.Results: The mucosal epithelium of villi and crypts were lined by enterocytes, goblet cells, argentaffin cells, microfold (M-cell) cells, tuft cells and intraepithelial lymphocytes. The multipotent stem cells were located at the crypt base. The length of the enterocyte microvilli was significantly longer (p < 0.05) in the treatment group of piglets. The number of different types of goblet cells and argentaffin cells was more in treated piglets irrespective of segments of intestine and age. The intraepithelial lymphocytes were located in apical, nuclear and basal positions in the lining epithelium of both villus tip and base with their significant increase in the treatment group of piglets. The transmission electron microscopy revealed the frequent occurrence of tuft cells in the lining mucosa of the small intestine in treated piglets.Conclusions: Dietary supplementation of probiotic and zinc induced the number of different mucosal cells of villi and crypts in the small intestine that might suggest the greater absorptive capacity of nutrients and effective immunity in critical pre and post-weaned piglets

    Applied anatomy and clinical significance of the maxillofacial and mandibular regions of the barking deer (Muntiacus muntjak) and sambar deer (Rusa unicolor)

    Get PDF
    Background: There is no previously reported information on the applied anatomy and clinical significance of the maxillofacial and mandibular regions of the barking deer and sambar deer. Materials and methods: Therefore, the present study was designed to provide some important clinical landmarks related to tracking of the infraorbital, mental and mandibular nerves with its clinical implications in regional anaesthesia in both the species. Results: In the present study, the distance between the most lateral bulging of the facial tuberosity to the infraorbital foramen and from the latter to the root of the alveolar tooth directly ventral to it was found to be 2.65 ± 0.01 cm and 0.90 ± ± 0.02 cm in males; 2.75 ± 0.01 cm, 1.11 ± 0.01 cm in females of barking deer and 4.57 ± 0.01 cm and 1.83 ± 0.02 cm in males; 4.52 ± 0.02 cm and 1.76 ± 0.02 cm in females of sambar deer. The infraorbital foramen was small, elliptical and was located at the level of first superior premolar teeth in barking deer and sambar deer. The facial tuberosity was located above the third superior premolar teeth in the barking deer but was located at the level of the first superior molar teeth in sambar deer. The distance between the lateral alveolar root of the third inferior incisor tooth to the mental foramen was 2.84 ± 0.01 cm in males, 2.78 ± 0.01 cm in females of barking deer and 3.04 ± 0.02 cm in males, 2.96 ± 0.01 cm in females of sambar deer which is an important landmark for achieving the location of the mental foramen nerve for the regional nerve block in both the species. The mandible of both the species showed oval-shaped mental foramen with unossified mandibular symphysis. Conclusions: The present study revealed that most of the parameters showed a statistically significant difference between the sexes in barking deer and sambar deer; however, from the practical point of view, these differences were meager. The results were discussed with regard to their clinical applications in various regional anaesthesia performed in maxillofacial and mandibular regions of both the species

    Simulation of pesticide concentrations in groundwater using Agricultural Drainage and Pesticide Transport (ADAPT) model

    Get PDF
    A water quality model for subirrigation and subsurface drainage, ADAPT (Agricultural Drainage And Pesticide Transport), was tested with field data collected under various water table management practices near Ames, IA. Atrazine and alachlor concentrations at various soil depths for water table depths of 30, 60, and 90 cm were simulated using ADAPT model for corn growing seasons of 1989 through 1991. Daily pesticide concentrations in groundwater predicted by the model were compared with available observed data for the same site. Predicted values of atrazine and alachlor concentrations in groundwater decreased when shallow water table depths were maintained in the lysimeters. Similar trends were noticed with the observed data. Reasonable agreement was obtained between the observed and predicted values of atrazine and alachlor for 1989 to 1991. However, in few cases, results showed a wide variation between observed and predicted values. Because no observed data was available for pesticide concentrations in the unsaturated zone, predicted results could not be compared. Based on our investigation, it appears that ADAPT may be used for predicting subsurface water quality under water table management practices; however, further validation is necessary with more field observed data from similar studies before wider application of this model is made

    Dependence of the 0.5(2e2/h) conductance plateau on the aspect ratio of InAs quantum point contacts with in-plane side gates

    Full text link
    The observation of a 0.5 conductance plateau in asymmetrically biased quantum point contacts with in-plane side gates has been attributed to the onset of spin-polarized current through these structures. For InAs quantum point contacts with the same width but longer channel length, there is roughly a fourfold increase in the range of common sweep voltage applied to the side gates over which the 0.5 conductance plateau is observed when the QPC aspect ratio (ratio of length over width of the narrow portion of the structure) is increased by a factor 3. Non-equilibrium Green s function simulations indicate that the increase in the size of the 0.5 conductance plateau is due to an increased importance, over a larger range of common sweep voltage, of the effects of electron-electron interactions in QPC devices with larger aspect ratio. The use of asymmetrically biased QPCs with in-plane side gates and large aspect ratio could therefore pave the way to build robust spin injectors and detectors for the successful implementation of spin field effect transistorsComment: 30 pages, 9 figure

    Disaggregation of Amylin Aggregate by Novel Conformationally Restricted Aminobenzoic Acid containing α/β and α/γ Hybrid Peptidomimetics

    Get PDF
    Diabetes has emerged as a threat to the current world. More than ninety five per cent of all the diabetic population has type 2 diabetes mellitus (T2DM). Aggregates of Amylin hormone, which is co-secreted with insulin from the pancreatic β-cells, inhibit the activities of insulin and glucagon and cause T2DM. Importance of the conformationally restricted peptides for drug design against T2DM has been invigorated by recent FDA approval of Symlin, which is a large conformationally restricted peptide. However, Symlin still has some issues including solubility, oral bioavailability and cost of preparation. Herein, we introduced a novel strategy for conformationally restricted peptide design adopting a minimalistic approach for cost reduction. We have demonstrated efficient inhibition of amyloid formation of Amylin and its disruption by a novel class of conformationally restricted β-sheet breaker hybrid peptidomimetics (BSBHps). We have inserted β, γ and δ -aminobenzoic acid separately into an amyloidogenic peptide sequence, synthesized α/β, α/γ and α/δ hybrid peptidomimetics, respectively. Interestingly, we observed the aggregation inhibitory efficacy of α/β and α/γ BSBHps, but not of α/δ analogues. They also disrupt existing amyloids into non-toxic forms. Results may be useful for newer drug design against T2DM as well as other amyloidoses and understanding amyloidogenesis

    Fast barrier-free switching in synthetic antiferromagnets

    Full text link
    We analytically solve the Landau-Lifshitz equations for the collective magnetization dynamics in a synthetic antiferromagnet (SAF) nanoparticle and uncover a regime of barrier-free switching under a short small-amplitude magnetic field pulse applied perpendicular to the SAF plane. We give examples of specific implementations for forming such low-power and ultra-fast switching pulses. For fully optical, resonant, barrier-free SAF switching we estimate the power per write operation to be 100 \sim 100 pJ, 10-100 times smaller than for conventional quasi-static rotation, which should be attractive for memory applications.Comment: 12 pages, 4 figure
    corecore