2,308 research outputs found

    Anharmonic Decay of Vibrational States in Amorphous Silicon

    Full text link
    Anharmonic decay rates are calculated for a realistic atomic model of amorphous silicon. The results show that the vibrational states decay on picosecond timescales and follow the two-mode density of states, similar to crystalline silicon, but somewhat faster. Surprisingly little change occurs for localized states. These results disagree with a recent experiment.Comment: 10 pages, 4 Postscript figure

    Polarized radio emission from extensive air showers measured with LOFAR

    Get PDF
    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%99\%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3±1.0)%(3.3\pm 1.0)\% for very inclined air showers at 25 m25\, \mathrm{m} to (20.3±1.3)%(20.3\pm 1.3)\% for almost vertical showers at 225 m225\, \mathrm{m}. Both dependencies are in qualitative agreement with theoretical predictions.Comment: 22 pages, 14 figures, accepted for publication in JCA

    The radio emission pattern of air showers as measured with LOFAR - a tool for the reconstruction of the energy and the shower maximum

    Get PDF
    The pattern of the radio emission of air showers is finely sampled with the Low-Frequency ARray (LOFAR). A set of 382 measured air showers is used to test a fast, analytic parameterization of the distribution of pulse powers. Using this parameterization we are able to reconstruct the shower axis and give estimators for the energy of the air shower as well as the distance to the shower maximum.Comment: 15 pages, 10 figures, accepted for publication in JCA

    A method for high precision reconstruction of air shower Xmax using two-dimensional radio intensity profiles

    Get PDF
    The mass composition of cosmic rays contains important clues about their origin. Accurate measurements are needed to resolve long-standing issues such as the transition from Galactic to extragalactic origin, and the nature of the cutoff observed at the highest energies. Composition can be studied by measuring the atmospheric depth of the shower maximum Xmax of air showers generated by high-energy cosmic rays hitting the Earth's atmosphere. We present a new method to reconstruct Xmax based on radio measurements. The radio emission mechanism of air showers is a complex process that creates an asymmetric intensity pattern on the ground. The shape of this pattern strongly depends on the longitudinal development of the shower. We reconstruct Xmax by fitting two-dimensional intensity profiles, simulated with CoREAS, to data from the LOFAR radio telescope. In the dense LOFAR core, air showers are detected by hundreds of antennas simultaneously. The simulations fit the data very well, indicating that the radiation mechanism is now well-understood. The typical uncertainty on the reconstruction of Xmax for LOFAR showers is 17 g/cm^2.Comment: 12 pages, 10 figures, submitted to Phys. Rev.

    Realtime processing of LOFAR data for the detection of nano-second pulses from the Moon

    Get PDF
    The low flux of the ultra-high energy cosmic rays (UHECR) at the highest energies provides a challenge to answer the long standing question about their origin and nature. Even lower fluxes of neutrinos with energies above 102210^{22} eV are predicted in certain Grand-Unifying-Theories (GUTs) and e.g.\ models for super-heavy dark matter (SHDM). The significant increase in detector volume required to detect these particles can be achieved by searching for the nano-second radio pulses that are emitted when a particle interacts in Earth's moon with current and future radio telescopes. In this contribution we present the design of an online analysis and trigger pipeline for the detection of nano-second pulses with the LOFAR radio telescope. The most important steps of the processing pipeline are digital focusing of the antennas towards the Moon, correction of the signal for ionospheric dispersion, and synthesis of the time-domain signal from the polyphased-filtered signal in frequency domain. The implementation of the pipeline on a GPU/CPU cluster will be discussed together with the computing performance of the prototype.Comment: Proceedings of the 22nd International Conference on Computing in High Energy and Nuclear Physics (CHEP2016), US

    Alternative Interpretation of Sharply Rising E0 Strengths in Transitional Regions

    Full text link
    It is shown that strong 0+2 -> 0+1 E0 transitions provide a clear signature of phase transitional behavior in finite nuclei. Calculations using the IBA show that these transition strengths exhibit a dramatic and robust increase in spherical-deformed shape transition regions, that this rise matches well the existing data, that the predictions of these E0 transitions remain large in deformed nuclei, and that these properties are intrinsic to the way that collectivity and deformation develop through the phase transitional region in the model, arising from the specific d-boson coherence in the wave functions, and that they do not necessarily require the explicit mixing of normal and intruder configurations from different IBA spaces.Comment: 6 pages, 3 figure

    Patterns of the ground states in the presence of random interactions: nucleon systems

    Full text link
    We present our results on properties of ground states for nucleonic systems in the presence of random two-body interactions. In particular we present probability distributions for parity, seniority, spectroscopic (i.e., in the laboratory framework) quadrupole moments and α\alpha clustering in the ground states. We find that the probability distribution for the parity of the ground states obtained by a two-body random ensemble simulates that of realistic nuclei: positive parity is dominant in the ground states of even-even nuclei while for odd-odd nuclei and odd-mass nuclei we obtain with almost equal probability ground states with positive and negative parity. In addition we find that for the ground states, assuming pure random interactions, low seniority is not favored, no dominance of positive values of spectroscopic quadrupole deformation, and no sign of α\alpha-cluster correlations, all in sharp contrast to realistic nuclei. Considering a mixture of a random and a realistic interaction, we observe a second order phase transition for the α\alpha-cluster correlation probability.Comment: 7 page

    Boson-conserving one-nucleon transfer operator in the interacting boson model

    Get PDF
    The boson-conserving one-nucleon transfer operator in the interacting boson model (IBA) is reanalyzed. Extra terms are added to the usual form used for that operator. These new terms change generalized seniority by one unit, as the ones considered up to now. The results obtained using the new form for the transfer operator are compared with those obtained with the traditional form in a simple case involving the pseudo-spin Bose-Fermi symmetry UB(6)⊗UF(12)U^{B}(6) \otimes U^F(12) in its UBF(5)⊗UF(2)U^{BF}(5) \otimes U^F(2) limit. Sizeable differences are found. These results are of relevance in the study of transfer reactions to check nuclear supersymmetry and in the description of (\beta)-decay within IBA.Comment: 13 pages, 1 table, 0 figures. To be published in Phys. Rev.
    • …
    corecore