687 research outputs found
Sum Rules and Moments of the Nucleon Spin Structure Functions
The nucleon has been used as a laboratory to investigate its own spin
structure and Quantum Chromodynamics. New experimental data on nucleon spin
structure at low to intermediate momentum transfers combined with existing high
momentum transfer data offer a comprehensive picture of the transition region
from the {\it confinement} regime of the theory to its {\it asymptotic freedom}
regime. Insight for some aspects of the theory is gained by exploring lower
moments of spin structure functions and their corresponding sum rules (i.e. the
Gerasimov-Drell-Hearn, Bjorken and Burkhardt-Cottingham). These moments are
expressed in terms of an operator product expansion using quark and gluon
degrees of freedom at moderately large momentum transfers. The sum rules are
verified to a good accuracy assuming that no singular behavior of the structure
functions is present at very high excitation energies. The higher twist
contributions have been examined through the moments evolution as the moments
evolution as the momentum transfer varies from higher to lower values.
Furthermore, QCD-inspired low-energy effective theories, which explicitly
include chiral symmetry breaking, are tested at low momentum transfers. The
validity of these theories is further examined as the momentum transfer
increases to moderate values. It is found that chiral perturbation calculations
agree reasonably well with the first moment of the spin structure function
at momentum transfer of 0.1 GeV but fail to reproduce the neutron
data in the case of the generalized polarizability .Comment: 21 pages, 4 figures, review for Modern Physics Letters A. Minor
modifications in text and improved quality for one figure. Corrected mistakes
in section
The magnetic mass of transverse gluon, the B-meson weak decay vertex and the triality symmetry of octonion
With an assumption that in the Yang-Mills Lagrangian, a left-handed fermion
and a right-handed fermion both expressed as quaternion make an octonion which
possesses the triality symmetry, I calculate the magnetic mass of the
transverse self-dual gluon from three loop diagram, in which a heavy quark pair
is created and two self-dual gluons are interchanged.
The magnetic mass of the transverse gluon depends on the mass of the pair
created quarks, and in the case of charmed quark pair creation, the magnetic
mass becomes approximately equal to at MeV. A possible time-like magnetic gluon mass
from two self-dual gluon exchange is derived, and corrections in the B-meson
weak decay vertices from the two self-dual gluon exchange are also evaluated.Comment: 22 pages, 9 figure
Estimates for parameters and characteristics of the confining SU(3)-gluonic field in neutral kaons and chiral limit for pseudoscalar nonet
First part of the paper is devoted to applying the confinement mechanism
proposed earlier by the author to estimate the possible parameters of the
confining SU(3)-gluonic field in neutral kaons. The estimates obtained are
consistent with the widths of the electromagnetic decays
too. The corresponding estimates of the gluon
concentrations, electric and magnetic colour field strengths are also adduced
for the mentioned field at the scales of the mesons under consideration. The
second part of the paper takes into account the results obtained previously by
the author to estimate the purely gluonic contribution to the masses of all the
mesons of pseudoscalar nonet and also to consider a possible relation with a
phenomenological string-like picture of confinement. Finally, the problem of
masses in particle physics is shortly discussed within the framework of
approach to the chiral symmetry breaking in quantum chromodynamics (QCD)
proposed recently by the author.Comment: LaTeX, 16 pages, 2 figure
Spin Sum Rules and the Strong Coupling Constant at large distance
We present recent results on the Bjorken and the generalized forward spin
polarizability sum rules from Jefferson Lab Hall A and CLAS experiments,
focusing on the low part of the measurements. We then discuss the
comparison of these results with Chiral Perturbation theory calculations. In
the second part of this paper, we show how the Bjorken sum rule with its
connection to the Gerasimov-Drell-Hearn sum, allows us to conveniently define
an effective coupling for the strong force at all distances.Comment: Contribution to proceedings for the Workshop on Spin Structure at
Long Distance (Newport News, March 2009
Measurement of the Q(2) Dependence of the Deuteron Spin Structure Function g(1) and Its Moments at Low Q(2) with CLAS
We measured the g1 spin structure function of the deuteron at low Q2, where QCD can be approximated with chiral perturbation theory (χPT). The data cover the resonance region, up to an invariant mass of W ≈ 1.9  GeV. The generalized Gerasimov-Drell-Hearn sum, the moment Γd1 and the spin polarizability γ0d are precisely determined down to a minimum Q2 of 0.02  GeV2 for the first time, about 2.5 times lower than that of previous data. We compare them to several χPT calculations and models. These results are the first in a program of benchmark measurements of polarization observables in the χPT domain.
We measured the g1 spin structure function of the deuteron at low Q2, where QCD can be approximated with chiral perturbation theory (χPT). The data cover the resonance region, up to an invariant mass of W ≈1.9  GeV. The generalized Gerasimov-Drell-Hearn sum, the moment Γ_{1}^{d} and the spin polarizability γ_{0}^{d} are precisely determined down to a minimum Q2 of 0.02  GeV2 for the first time, about 2.5 times lower than that of previous data. We compare them to several χPT calculations and models. These results are the first in a program of benchmark measurements of polarization observables in the χPT domain
Experimental Study of Isovector Spin Sum Rules
We present the Bjorken integral extracted from Jefferson Lab experiment EG1b for 0.05\u3c Q2 2. The integral is fit to extract the twist-4 element f p−n2 which appears to be relatively large and negative. Systematic studies of this higher twist analysis establish its legitimacy at Q2 around 1  GeV2. We also performed an isospin decomposition of the generalized forward spin polarizability γ0. Although its isovector part provides a reliable test of the calculation techniques of chiral perturbation theory, our data disagree with the calculations
Experimental determination of the evolution of the Bjorken integral at low Q^2
We extract the Bjorken integral Gamma^{p-n}_1 in the range 0.17 < Q^2 < 1.10
GeV^2 from inclusive scattering of polarized electrons by polarized protons,
deuterons and 3He, for the region in which the integral is dominated by nucleon
resonances. These data bridge the domains of the hadronic and partonic
descriptions of the nucleon. In combination with earlier measurements at higher
Q^2, we extract the non-singlet twist-4 matrix element f_2.Comment: Quoted world data updated. Minor change in some results, Minor
rephrasin
- …