341 research outputs found

    Subtleties in the beta function calculation of N=1 supersymmetric gauge theories

    Full text link
    We investigate some peculiarities in the calculation of the two-loop beta-function of N=1N=1 supersymmetric models which are intimately related to the so-called "Anomaly Puzzle". There is an apparent paradox when the computation is performed in the framework of the covariant derivative background field method. In this formalism, it is obtained a finite two-loop effective action, although a non-null coefficient for the beta-function is achieved by means of the renormalized two-point function in the background field. We show that if the standard background field method is used, this two-point function has a divergent part which allows for the calculation of the beta-function via the renormalization constants, as usual. Therefore, we conjecture that this paradox has its origin in the covariant supergraph formalism itself, possibly being an artifact of the rescaling anomaly.Comment: Few misprintings corrected and comments added. To meet the version to be published at European Physical Journal

    Advances towards the systematization of calculations with Implicit Regularization

    Full text link
    There is currently a high demand for theoretical predictions for processes at next-to-next-to-leading order (NNLO) and beyond, mainly due to the large amount of data which has already been collected at LHC. This requires practical methods that meet the physical requirements of the models under study. We develop a new procedure for applying Constrained Implicit Regularization which simplifies the calculation of amplitudes, including finite parts. The algebraic identities to separate the divergent parts free from the external momenta are used after the Feynman parametrization. These algebraic identities establish a set of scale relations which are always the same and do not need to be calculated in each situation. This procedure unifies the calculations in massive and non-massive models in an unique procedure. We establish a systematization of the calculation of one-loop amplitudes and extend the procedure for higher-loop orders.Comment: 25 pages, 4 figure

    Ultraviolet and Infrared Divergences in Implicit Regularization: a Consistent Approach

    Full text link
    Implicit Regularization is a 4-dimensional regularization initially conceived to treat ultraviolet divergences. It has been successfully tested in several instances in the literature, more specifically in those where Dimensional Regularization does not apply. In the present contribution we extend the method to handle infrared divergences as well. We show that the essential steps which rendered Implicit Regularization adequate in the case of ultraviolet divergences have their counterpart for infrared ones. Moreover we show that a new scale appears, typically an infrared scale which is completely independent of the ultraviolet one. Examples are given.Comment: 9 pages, version to appear in Mod. Phys. Lett.

    Residual gauge-invariance in a massive Lorentz-violating extension of QED

    Full text link
    We reassess an alternative CPT-odd electrodynamics obtained from a Palatini-like procedure. Starting from a more general situation, we analyze the physical consistency of the model for different values of the parameter introduced in the mass tensor. We show that there is a residual gaugeinvariance in the model if the local transformation is taken to vary only in the direction of the Lorentz-breaking vector

    Regularization Independent Analysis of the Origin of Two Loop Contributions to N=1 Super Yang-Mills Beta Function

    Full text link
    We present a both ultraviolet and infrared regularization independent analysis in a symmetry preserving framework for the N=1 Super Yang-Mills beta function to two loop order. We show explicitly that off-shell infrared divergences as well as the overall two loop ultraviolet divergence cancel out whilst the beta function receives contributions of infrared modes.Comment: 7 pages, 2 figures, typos correcte

    Chiral Anomaly and CPT invariance in an implicit momentum space regularization framework

    Full text link
    This is the second in a series of two contributions in which we set out to establish a novel momentum space framework to treat field theoretical infinities in perturbative calculations when parity-violating objects occur. Since no analytic continuation on the space-time dimension is effected, this framework can be particularly useful to treat dimension-specific theories. Moreover arbitrary local terms stemming from the underlying infinities of the model can be properly parametrized. We (re)analyse the undeterminacy of the radiatively generated CPT violating Chern-Simons term within an extended version of QED4QED_4 and calculate the Adler-Bardeen-Bell-Jackiw triangle anomaly to show that our framework is consistent and general to handle the subtleties involved when a radiative corretion is finite.Comment: 16 pages, LaTeX, version to appear in PR

    Consistency analysis of a nonbirefringent Lorentz-violating planar model

    Full text link
    In this work analyze the physical consistency of a nonbirefringent Lorentz-violating planar model via the analysis of the pole structure of its Feynman propagators. The nonbirefringent planar model, obtained from the dimensional reduction of the CPT-even gauge sector of the standard model extension, is composed of a gauge and a scalar fields, being affected by Lorentz-violating (LIV) coefficients encoded in the symmetric tensor κμν\kappa_{\mu\nu}. The propagator of the gauge field is explicitly evaluated and expressed in terms of linear independent symmetric tensors, presenting only one physical mode. The same holds for the scalar propagator. A consistency analysis is performed based on the poles of the propagators. The isotropic parity-even sector is stable, causal and unitary mode for 0κ00<10\leq\kappa_{00}<1. On the other hand, the anisotropic sector is stable and unitary but in general noncausal. Finally, it is shown that this planar model interacting with a λφ4\lambda|\varphi|^{4}-Higgs field supports compactlike vortex configurations.Comment: 11 pages, revtex style, final revised versio

    Induced Lorentz- and CPT-violating Chern-Simons term in QED: Fock-Schwinger proper time method

    Get PDF
    Using the Fock-Schwinger proper time method, we calculate the induced Chern-Simons term arising from the Lorentz- and CPT-violating sector of quantum electrodynamics with a bμψˉγμγ5ψb_\mu \bar{\psi}\gamma^\mu \gamma_5 \psi term. Our result to all orders in bb coincides with a recent linear-in-bb calculation by Chaichian et al. [hep-th/0010129 v2]. The coincidence was pointed out by Chung [Phys. Lett. {\bf B461} (1999) 138] and P\'{e}rez-Victoria [Phys. Rev. Lett. {\bf 83} (1999) 2518] in the standard Feynman diagram calculation with the nonperturbative-in-bb propagator.Comment: 11 pages, no figur

    Aspects of Causality and Unitarity and Comments on Vortex-like Configurations in an Abelian Model with a Lorentz-Breaking Term

    Full text link
    The gauge-invariant Chern-Simons-type Lorentz- and CPT-breaking term is here reassessed and a spin-projector method is adopted to account for the breaking (vector) parameter. Issues like causality, unitarity, spontaneous gauge-symmetry breaking and vortex formation are investigated, and consistency conditions on the external vector are identified.Comment: 12 pages, late
    corecore