13 research outputs found

    Electronic band structure and properties of the solid solution Eu1–xFexO

    Full text link
    The electronic band structure of the solid solution Eu1–xFexO (x = 0.0625, 0.125) involved in the composition of the spintronic composite EuO: Fe has been calculated using the full-potential linearized augmented- plane-wave (FLAPW) method. The calculations have been performed with the correction of the exchange–correlation potential in the framework of the generalized gradient approximation (GGA + U). It has been shown that iron and europium cations have the oxidation state close to 2+. In this case, the iron cations are in the high-spin state with the magnetic moment close to 4 μB, which explains the significant increase in the Curie temperature of the composite upon doping of EuO with iron. It has been demonstrated that there is a small transfer of the electron density from Eu2+ cations to Fe2+ cations. It has been argued that the main factor providing a high concentration of Eu3+ cations in the composite is, probably, the presence of Eu2O3 nanoclusters in the structure. © 2015, Pleiades Publishing, Ltd

    Applicability of the seismic method in rock stability assessment

    No full text
    corecore