16 research outputs found

    Development of DNA-Biochip for Identification of Influenza A Virus Subtypes

    Get PDF
    Developed was the DNA-biochip to identify subtypes of influenza A virus, pathogenic for humans. Microchip was capable of detecting H1, H3, H5-subtypes of hemagglutinin (including H1-subtype of pandemic A/H1N1(2009) influenza virus ) and neuraminidase subtypes N1,N2 of influenza virus. This microchip was successfully tested on the strains of A/H5N1 highly pathogenic avian influenza virus, A/H1N1(2009) pandemic influenza virus, A/H1N1 and A/H3N2 seasonal influenza viruses

    Detection and elimination of cellular bottlenecks in protein-producing yeasts

    Get PDF
    Yeasts are efficient cell factories and are commonly used for the production of recombinant proteins for biopharmaceutical and industrial purposes. For such products high levels of correctly folded proteins are needed, which sometimes requires improvement and engineering of the expression system. The article summarizes major breakthroughs that led to the efficient use of yeasts as production platforms and reviews bottlenecks occurring during protein production. Special focus is given to the metabolic impact of protein production. Furthermore, strategies that were shown to enhance secretion of recombinant proteins in different yeast species are presented

    Roles of Ca2+ and secretory pathway Ca2+-ATPase pump type 1 (SPCA1) in intra-Golgi transport

    No full text
    Mechanisms for intra-Golgi transport remain a hotly debated topic. Recently, we published data illuminating a new aspect involved in intra-Golgi transport, namely a release of free cytosolic Ca2+ ([Ca2+]cyt) from the lumen of Golgi cisternae that is fundamental for the secretion and the progression of newly synthesized proteins through the Golgi apparatus (GA). This increase in [Ca2+]cyt during the late stage of synchronous intra-Golgi transport stimulates the fusion of membranes containing cargo proteins and Golgi cisternae, allowing the progression of proteins through the GA. Subsequent restoration of the basal [Ca2+]cyt is also important for the delivery of cargo to the proper final destination. Additionally, the secretory pathway Ca2+-ATPase Ca2+ pump (SPCA1) plays an essential role at this stage. The fine regulation of membrane fusion is also important for the formation and the maintenance of the Golgi ribbon and SPCA1, which regulates [Ca2+]cyt levels, can be considered a controller of trafficking. This evidence contradicts a model of intra-Golgi transport in which permanent membrane continuity allows cargo diffusion and progression

    Proteomic profiling and glycomic analysis of the yeast cell wall in strains with Aflatoxin B 1

    No full text
    The use of microorganisms for Aflatoxin B1 elimination has been studied as a new alternative tool and it is known that cell wall carried out a critical role. For that reason, cell wall and soluble intracellular fraction of eight yeasts with AFB1 detoxification capability were analysed. The quantitative and qualitative comparative label-free proteomic allowed the identification of diverse common constituent proteins, which revealed that putative cell wall proteins entailed less than 10% of the total proteome. It was possible to characterize different enzymes linked to cell wall polysaccharides biosynthesis as well as other proteins related with the cell wall organization and regulation. Additionally, the concentration of the principal polysaccharides was determined which permitted us to observe that β-glucans concentration was higher than mannans in most of the samples. In order to better understand the biosorption role of the cell wall against the AFB1, an antimycotic (Caspofungin) was used to damage the cell wall structure. This assay allowed the observation of an effect on the normal growth of those yeasts with damaged cell walls that were exposed to AFB1. This effect was not observed in yeast with intact cell walls, which may reveal a pro�tective role of this structure against mycotoxin
    corecore