51 research outputs found
Fire behaviour of modern façade materials – Understanding the Grenfell Tower fire
The 2017 Grenfell Tower fire spread rapidly around the combustible façade system on the outside of the building, killing 72 people. We used a range of micro- and bench-scale methods to understand the fire behaviour of different types of façade product, including those used on the Tower, in order to explain the speed, ferocity and lethality of the fire. Compared to the least flammable panels, polyethylene-aluminium composites showed 55x greater peak heat release rates (pHRR) and 70x greater total heat release (THR), while widely-used high-pressure laminate panels showed 25x greater pHRR and 115x greater THR. Compared to the least combustible insulation products, polyisocyanurate foam showed 16x greater pHRR and 35x greater THR, while phenolic foam showed 9x greater pHRR and 48x greater THR. A few burning drips of polyethylene from the panelling are enough to ignite the foam insulation, providing a novel explanation for rapid flame-spread within the facade. Smoke from polyisocyanurates was 15x, and phenolics 5x more toxic than from mineral wool insulation. 1kg of burning polyisocyanurate insulation is sufficient to fill a 50m3 room with an incapacitating and ultimately lethal effluent. Simple, additive models are proposed, which provide the same rank order as BS8414 large-scale regulatory tests
Atomic Species Associated with the Portevin–Le Chatelier Effect in Superalloy 718 Studied by Mechanical Spectroscopy
In many Ni-based superalloys, dynamic strain aging (DSA) generates an inhomogeneous plastic deformation resulting in jerky flow known as the Portevin--Le Chatelier (PLC) effect. This phenomenon has a deleterious effect on the mechanical properties and, at high temperature, is related to the diffusion of substitutional solute atoms toward the core of dislocations. However, the question about the nature of the atomic species responsible for the PLC effect at high temperature still remains open. The goal of the present work is to answer this important question; to this purpose, three different 718-type and a 625 superalloy were studied through a nonconventional approach by mechanical spectroscopy. The internal friction (IF) spectra of all the studied alloys show a relaxation peak P718 (at 885 K for 0.1 Hz) in the same temperature range, 700 K to 950 K, as the observed PLC effect. The activation parameters of this relaxation peak have been measured, Ea(P718){\thinspace}={\thinspace}2.68{\thinspace}{\textpm}{\thinspace}0.05 eV, 0{\thinspace}={\thinspace}2{\textperiodcentered}10-15 {\textpm} 1 s as well as its broadening factor {\thinspace}={\thinspace}1.1. Experiments on different alloys and the dependence of the relaxation strength on the amount of Mo attribute this relaxation to the stress-induced reorientation of Mo-Mo dipoles due to the short distance diffusion of one Mo atom by exchange with a vacancy. Then, it is concluded that Mo is the atomic species responsible for the high-temperature PLC effect in 718 superallo
Metabolic and antioxidant markers in the plasma of sportsmen from a Mediterranean town performing non-agonistic activity.
Valutazione di marker biochimici e metabolici in giovani persone che svolgono un'intensa attività fisica quotidiana
- …