150 research outputs found

    Optimizing magneto-dipolar interactions for synchronizing vortex based spin-torque nano-oscillators

    Get PDF
    We report on a theoretical study about the magneto-dipolar coupling and synchronization between two vortex-based spin-torque nano-oscillators. In this work we study the dependence of the coupling efficiency on the relative magnetization parameters of the vortices in the system. For that purpose, we combine micromagnetic simulations, Thiele equation approach, and analytical macro-dipole approximation model to identify the optimized configuration for achieving phase-locking between neighboring oscillators. Notably, we compare vortices configurations with parallel (P) polarities and with opposite (AP) polarities. We demonstrate that the AP core configuration exhibits a coupling strength about three times larger than in the P core configuration.Comment: 8 pages, 11 figure

    The Ginzburg-Landau model of Bose-Einstein condensation of magnons

    Full text link
    We introduce a system of phenomenological equations for Bose-Einstein condensates of magnons in the one-dimensional setting. The nonlinearly coupled equations, written for amplitudes of the right-and left-traveling waves, combine basic features of the Gross-Pitaevskii and complex Ginzburg-Landau models. They include localized source terms, to represent the microwave magnon-pumping field. With the source represented by the δ\delta -functions, we find analytical solutions for symmetric localized states of the magnon condensates. We also predict the existence of asymmetric states with unequal amplitudes of the two components. Numerical simulations demonstrate that all analytically found solutions are stable. With the δ\delta -function terms replaced by broader sources, the simulations reveal a transition from the single-peak stationary symmetric states to multi-peak ones, generated by the modulational instability of extended nonlinear-wave patterns. In the simulations, symmetric initial conditions always converge to symmetric stationary patterns. On the other hand, asymmetric inputs may generate nonstationary asymmetric localized solutions, in the form of traveling or standing waves. Comparison with experimental results demonstrates that the phenomenological equations provide for a reasonably good model for the description of the spatiotemporal dynamics of magnon condensates.Comment: Physical Review B, in pres

    Tunnelling series in terms of perturbation theory for quantum spin systems

    Get PDF
    Considered is quantum tunnelling in anisotropic spin systems in a magnetic field perpendicular to the anisotropy axis. In the domain of small field the problem of calculating tunnelling splitting of energy levels is reduced to constructing the perturbatio n series with degeneracy, the order of degeneracy being proportional to a spin value. Partial summation of this series taking into account ''dangerous terms'' with small denominators is performed and the value of tunnelling splitting is calculated with allowance for the first correction with respect to a magnetic field.Comment: 7 pages, REVTeX 3.

    Exchange-coupling constants, spin density map, and Q dependence of the inelastic neutron scattering intensity in single-molecule magnets

    Full text link
    The Q dependence of the inelastic neutron scattering (INS) intensity of transitions within the ground-state spin multiplet of single-molecule magnets (SMMs) is considered. For these transitions, the Q dependence is related to the spin density map in the ground state, which in turn is governed by the Heisenberg exchange interactions in the cluster. This provides the possibility to infer the exchange-coupling constants from the Q dependence of the INS transitions within the spin ground state. The potential of this strategy is explored for the M = +-10 -> +- 9 transition within the S = 10 multiplet of the molecule Mn12 as an example. The Q dependence is calculated for powder as well as single-crystal Mn12 samples for various exchange-coupling situations discussed in the literature. The results are compared to literature data on a powder sample of Mn12 and to measurements on an oriented array of about 500 single-crystals of Mn12. The calculated Q dependence exhibits significant variation with the exchange-coupling constants, in particular for a single-crystal sample, but the experimental findings did not permit an unambiguous determination. However, although challenging, suitable experiments are within the reach of today's instruments.Comment: 11 pages, 6 figures, REVTEX4, to appear in PR

    Stable Magnetostatic Solitons in Yttrium Iron Garnet Film Waveguides for Tilted in-Plane Magnetic Fields

    Full text link
    The possibility of nonlinear pulses generation in Yttrium Iron Garnet thin films for arbitrary direction between waveguide and applied static in-plane magnetic field is considered. Up to now only the cases of in-plane magnetic fields either perpendicular or parallel to waveguide direction have been studied both experimentally and theoretically. In the present paper it is shown that also for other angles (besides 0 or 90 degrees) between a waveguide and static in-plane magnetic field the stable bright or dark (depending on magnitude of magnetic field) solitons could be created.Comment: Phys. Rev. B (accepted, April 1, 2002

    Quantum Fluctuations in Large-Spin Molecules

    Full text link
    A new type of mesoscopic quantum effect in large-spin molecules possessing easy-axis anisotropy, such as Mn12, is predicted. The response of such a system to an external field applied perpendicular to the easy axis is considered. It is shown that the susceptibility of this system exhibits a peculiar peak of purely quantum origin. This effect arises from very general properties of quantum fluctuations in spin systems. We demonstrate that the effect is entirely accessible for contemporary experimental techniques. Our studies show that the many-spin nature of the Mn12 clusters is important for a correct description of this quantum peak.Comment: REVTeX, 3 pages, 6 figures (postscript

    First order valence transition in YbInCu_4 in the (B,T) - plane

    Full text link
    The puzzling properties of the first order phase transition in YbInCu4_4 and its alloys in the wide range of magnetic fields and temperatures are perfectly described in terms of a simple entropy transition for free Yb ions. In particular, it turns out that the transition line in the (B,T)(B,T)-plane is very close to the elliptic shape, as it has been observed experimentally. Similar calculations are done, and the experiments are proposed for the (γ−α)(\gamma{-}\alpha) phase transition in Ce in Megagauss fields. We speculate, that in case of YbInCu4_4 the first order transition is a Mott transition between a higher temperature phase in which localized moments are stabilized by the entropy terms in the free energy, and a band-like non-magnetic ground state of the ff-electrons.Comment: RevTeX, 5 pages, 2 figure
    • …
    corecore