1,414 research outputs found
Invariant Form of Hyperfine Interaction with Multipolar Moments - Observation of Octupolar Moments in NpO and CeB by NMR -
The invariant form of the hyperfine interaction between multipolar moments
and the nuclear spin is derived, and applied to discuss possibilities to
identify the antiferro-octupolar (AFO) moments by NMR experiments. The ordered
phase of NpO and the phase IV of CeLaB are studied in
detail. Recent O NMR for polycrystalline samples of NpO are
discussed theoretically from our formulation. The observed feature of the
splitting of O NMR spectrum into a sharp line and a broad line, their
intensity ratio, and the magnetic field dependence of the shift and of the
width can be consistently explained on the basis of the triple \bq AFO
ordering model proposed by Paix\~{a}o {\it et. al.} Thus, the present theory
shows that the O NMR spectrum gives a strong support to the model. The 4
O sites in the fcc NpO become inequivalent due to the secondary triple
\bq ordering of AF-quadrupoles: one cubic and three non-cubic sites. It turns
out that the hyperfine field due to the antiferro-dipole and AFO moments
induced by the magnetic field, and the quadrupolar field at non-cubic sites are
key ingredients to understand the observed spectrum. The controversial problem
of the nature of phase IV in CeLaB is also studied. It is
pointed out that there is a unique feature in the NMR spectra, if the
() AFO ordering is
realized in CeLaB. Namely, the hyperfine splitting of a B
atom pair on the sites crosses zero on the
plane when the magnetic field is rotated around the axis.Comment: 22 pages, 2 figure
Knowledge Extraction for Art History: the Case of Vasari's The Lives of The Artists (1568)
Knowledge Extraction (KE) techniques are used to convert unstructured information present in texts to Knowledge Graphs (KGs) which can be queried and explored. Despite their potential for cultural heritage domains, such as Art History, these techniques often encounter limitations if applied to domain-specific data. In this paper we present the main challenges that KE has to face on art-historical texts, by using as case study Giorgio Vasari's The Lives of The Artists. This paper discusses the following NLP tasks for art-historical texts, namely entity recognition and linking, coreference resolution, time extraction, motif extraction and artwork extraction. Several strategies to annotate art-historical data for these tasks and evaluate NLP models are also proposed
Multimodal Search on Iconclass Using Vision-Language Pre-Trained Models
Terminology sources, such as controlled vocabularies, thesauri and classification systems, play a key role in digitizing cultural heritage. However, Information Retrieval (IR) systems that allow to query and explore these lexical resources often lack an adequate representation of the semantics behind the user's search, which can be conveyed through multiple expression modalities (e.g., images, keywords or textual descriptions). This paper presents the implementation of a new search engine for one of the most widely used iconography classification system, Iconclass. The novelty of this system is the use of a pre-trained vision-language model, namely CLIP, to retrieve and explore Iconclass concepts using visual or textual queries
Multipole Ordering and Fluctuations in f-Electron Systems
We investigate effects of multipole moments in f-electron systems both from
phenomenological and microscopic viewpoints. First, we discuss significant
effects of octupole moment on the magnetic susceptibility in a paramagnetic
phase. It is found that even within mean-field approximation, the magnetic
susceptibility deviates from the Curie-Weiss law due to interactions between
dipole and octupole moments. Next, we proceed to a microscopic theory for
multipole ordering on the basis of a j-j coupling scheme. After brief
explanation of a method to derive multipole interactions from the -electron
model, we discuss several multipole ordered phases depending on lattice
structure. Finally, we show our new development of the microscopic approach to
the evaluation of multipole response functions. We apply fluctuation exchange
approximation to the f-electron model, and evaluate multipole response
functions.Comment: 7 pages, 4 figures, Proceedings of ASR-WYP-200
29-Si NMR and Hidden Order in URu2Si2
We present new 29-Si NMR spectra in URu2Si2 for varying temperature T, and
external field H. On lowering T, the systematics of the low-field lineshape and
width reveal an extra component (lambda) to the linewidth below T_N ~ 17 K not
observed previously. We find that lambda is magnetic-field independent and
dominates the low-field lineshape for all orientations of H with respect to the
tetragonal c axis. The behavior of lambda indicates a direct relationship
between the 29-Si spin and the transition at T_N, but it is inconsistent with a
coupling of the nuclei to static antiferromagnetic order/disorder of the U-spin
magnetization. This leads us to conjecture that lambda is due to a coupling of
29-Si to the system's hidden-order parameter. A possible coupling mechanism
involving charge degrees of freedom and indirect nuclear spin/spin interactions
is proposed. We also propose further experiments to test for the existence of
this coupling mechanism.Comment: 4 pages, 4 figures, submitted to PR
Spin dynamics of molecular nanomagnets fully unraveled by four-dimensional inelastic neutron scattering
Molecular nanomagnets are among the first examples of spin systems of finite
size and have been test-beds for addressing a range of elusive but important
phenomena in quantum dynamics. In fact, for short-enough timescales the spin
wavefunctions evolve coherently according to the an appropriate cluster
spin-Hamiltonian, whose structure can be tailored at the synthetic level to
meet specific requirements. Unfortunately, to this point it has been impossible
to determine the spin dynamics directly. If the molecule is sufficiently
simple, the spin motion can be indirectly assessed by an approximate model
Hamiltonian fitted to experimental measurements of various types. Here we show
that recently-developed instrumentation yields the four-dimensional
inelastic-neutron scattering function S(Q,E) in vast portions of reciprocal
space and enables the spin dynamics to be determined with no need of any model
Hamiltonian. We exploit the Cr8 antiferromagnetic ring as a benchmark to
demonstrate the potential of this new approach. For the first time we extract a
model-free picture of the quantum dynamics of a molecular nanomagnet. This
allows us, for example, to examine how a quantum fluctuation propagates along
the ring and to directly test the degree of validity of the
N\'{e}el-vector-tunneling description of the spin dynamics
Applications of Temperley-Lieb algebras to Lorentz lattice gases
Motived by the study of motion in a random environment we introduce and
investigate a variant of the Temperley-Lieb algebra. This algebra is very rich,
providing us three classes of solutions of the Yang-Baxter equation. This
allows us to establish a theoretical framework to study the diffusive behaviour
of a Lorentz Lattice gas. Exact results for the geometrical scaling behaviour
of closed paths are also presented.Comment: 10 pages, latex file, one figure(by request
Inflection point in the magnetic field dependence of the ordered moment of URu2Si2 observed by neutron scattering in fields up to 17 T
We have measured the magnetic field dependence of the ordered
antiferromagnetic moment and the magnetic excitations in the heavy-fermion
superconductor URu2Si2 for fields up to 17 Tesla applied along the tetragonal c
axis, using neutron scattering. The decrease of the magnetic intensity of the
tiny moment with increasing field does not follow a simple power law, but shows
a clear inflection point, indicating that the moment disappears first at the
metamagnetic transition at ~40 T. This suggests that the moment m is connected
to a hidden order parameter Phi which belongs to the same irreducible
representation breaking time-reversal symmetry. The magnetic excitation gap at
the antiferromagnetic zone center Q=(1,0,0) increases continuously with
increasing field, while that at Q=(1.4,0,0) is nearly constant. This field
dependence is opposite to that of the gap extracted from specific-heat data.Comment: 10 pages, 5 figures, submitted to PR
Evidence for Octupole Order in CeLaB from Resonant X-ray Scattering
The azimuthal angle dependence observed in the resonant X-ray scattering in
phase IV of CeLaB is analyzed theoretically. It is shown
that the peculiar angle dependence observed in the E2 channel is consistent
with the Gamma_{5u}-type octupole order with principal axis along (111) and
equivalent directions. Under the assumption that the four equivalent octupole
domains are nearly equally populated in the sample, the observed angle
dependences are reproduced by calculation for both sigma-sigma' and sigma-pi'
polarizations. The calculation for various symmetries of order parameters
excludes unambiguously other order parameters than the Gamma_{5u}-type
octupole.Comment: 4 pages, 2 figures, 3 tables, in JPSJ forma
Multipole correlations in low-dimensional f-electron systems
By using a density matrix renormalization group method, we investigate the
ground-state properties of a one-dimensional three-orbital Hubbard model on the
basis of a j-j coupling scheme. For , where is a parameter
to control cubic crystalline electric field effect, one orbital is itinerant,
while other two are localized. Due to the competition between itinerant and
localized natures, we obtain orbital ordering pattern which is sensitive to
, leading to a characteristic change of quadrupole state
into an incommensurate structure. At , all the three orbitals are
degenerate, but we observe a peak at in quadrupole
correlation, indicating a ferro-orbital state, and the peak at in
dipole correlation, suggesting an antiferromagnetic state. We
also discuss the effect of octupole on magnetic anisotropy.Comment: 4 pages, 3 figures, Proceedings of ASR-WYP-2005 (September 27-29,
2005, Tokai
- …