3,846 research outputs found

    Characteristics of events with metric-to-decahectometric type II radio bursts associated with CMEs and flares in relation to SEP events

    Full text link
    A gradual solar energetic particle (SEP) event is thought to happen when particles are accelerated at a shock due to a fast coronal mass ejection (CME). To quantify what kind of solar eruptions can result in such SEP events, we have conducted detailed investigations on the characteristics of CMEs, solar flares and m-to-DH wavelength type II radio bursts (herein after m-to-DH type II bursts) for SEP-associated and non-SEP-associated events, observed during the period of 1997-2012. Interestingly, 65% of m-to-DH type II bursts associated with CMEs and flares produced SEP events. The SEP-associated CMEs have higher sky-plane mean speed, projection corrected speed, and sky-plane peak speed than those of non-SEP-associated CMEs respectively by 30%, 39%, and 25%, even though the two sets of CMEs achieved their sky-plane peak speeds at nearly similar heights within LASCO field of view. We found Pearson's correlation coefficients between the speeds of CMEs speeds and logarithmic peak intensity of SEP events are cc = 0.62 and cc = 0.58, respectively. We also found that the SEP-associated CMEs are on average of three times more decelerated (-21.52 m/s2) than the non-SEP-associated CMEs (-5.63 m/s2). The SEP-associated m type II bursts have higher frequency drift rate and associated shock speed than those of the non-SEP-associated events by 70% and 25% respectively. The average formation heights of m and DH type II radio bursts for SEP-associated events are lower than for non-SEP-associated events. 93% of SEP-associated events originate from the western hemisphere and 65% of SEP-associated events are associated with interacting CMEs. The obtained results indicate that, at least for the set of CMEs associated with m-to-DH type II bursts, SEP-associated CMEs are more energetic than those not associated with SEPs, thus suggesting that they are effective particle accelerators.Comment: 19 pages, 10 figures, 3 tables, accepted for publication by ApS

    Shear Viscosities from the Chapman-Enskog and the Relaxation Time Approaches

    Full text link
    The interpretation of the measured elliptic and higher order collective flows in heavy-ion collisions in terms of viscous hydrodynamics depends sensitively on the ratio of shear viscosity to entropy density. Here we perform a quantitative comparison between the results of shear viscosities from the Chapman-Enskog and relaxation time methods for selected test cases with specified elastic differential cross sections: (i) The non-relativistic, relativistic and ultra-relativistic hard sphere gas with angle and energy independent differential cross section (ii) The Maxwell gas, (iii) chiral pions and (iv) massive pions for which the differential elastic cross section is taken from experiments. Our quantitative results reveal that (i) the extent of agreement (or disagreement) depends sensitively on the energy dependence of the differential cross sections employed, and (ii) stress the need to perform quantum molecular dynamical (URQMD) simulations that employ Green-Kubo techniques with similar cross sections to validate the codes employed and to test the accuracy of other methods.Comment: To be submitted to PR

    Purification and Biochemical Characterisation of Ricin from Castor Seeds

    Get PDF
    Ricin is a highly toxic plant toxin of Ricinus comtnunis seeds, commonly known as castor seeds. The toxin was extracted and purified using affinity and size exclusion  chromatography. The purity of ricin was evaluated by the sodium dodecylsulphate-polyacrylamide gel electrophoresis. Purified ricin gives a single band under non-reduced condition and two bands under reduced condition. The molecular weight of ricin was 65,0000 approx. The subunit structure of ricin on treatment with p-mercaptoethanol (1 %) at molecular level revealed that the reducing agent converts ricin into two peptides. The molecular weight of these two peptides was estimated to be 34000 and 32000. The western-blot analysis revealed two dots for its two peptides in 29 kDa to 36 kDa regions. The heamagglutination litres for ricin and Ricinus communis agglutinins were 1:8 and 1:256. The purity of purified ricin was further confirmed by the electrophoresis and the western-blot analysis. The Indian variety of castor seeds, known as Ricinus communis used in this study, contains approx. 0.12 per cent ricin

    Stabilization of a G-Quadruplex from Unfolding by Replication Protein A Using Potassium and the Porphyrin TMPyP4

    Get PDF
    Replication protein A (RPA) plays an essential role in DNA replication by binding and unfolding non-canonical single-stranded DNA (ssDNA) structures. Of the six RPA ssDNA binding domains (labeled A-F), RPA-CDE selectively binds a G-quadruplex forming sequence (5′-TAGGGGAAGGGTTGGAGTGGGTT-3′ called Gq23). In K+, Gq23 forms a mixed parallel/antiparallel conformation, and in Na+ Gq23 has a less stable (TM lowered by ∼20°C), antiparallel conformation. Gq23 is intramolecular and 1D NMR confirms a stable G-quadruplex structure in K+. Full-length RPA and RPA-CDE-core can bind and unfold the Na+ form of Gq23 very efficiently, but complete unfolding is not observed with the K+ form. Studies with G-quadruplex ligands, indicate that TMPyP4 has a thermal stabilization effect on Gq23 in K+, and inhibits complete unfolding by RPA and RPA-CDE-core. Overall these data indicate that G-quadruplexes present a unique problem for RPA to unfold and ligands, such as TMPyP4, could possibly hinder DNA replication by blocking unfolding by RPA
    corecore