1,347 research outputs found

    Quantum integrability of the Alday-Arutyunov-Frolov model

    Full text link
    We investigate the quantum integrability of the Alday-Arutyunov-Frolov (AAF) model by calculating the three-particle scattering amplitude at the first non-trivial order and showing that the S-matrix is factorizable at this order. We consider a more general fermionic model and find a necessary constraint to ensure its integrability at quantum level. We then show that the quantum integrability of the AAF model follows from this constraint. In the process, we also correct some missed points in earlier works.Comment: 40 pages; Replaced with published version. Appendix and comments adde

    Ictal and interictal MEG in pediatric patients with tuberous sclerosis and drug resistant epilepsy

    Get PDF
    Purpose: Drug resistant epilepsy (DRE) is common in patients with tuberous sclerosis (TS). Interictal MEG has been shown as a valuable instrument in the presurgical workup. The goal of our study was to evaluate the role of ictal MEG in epileptogenic tuber selection, especially in patients with multiple irritative zones. Methods: The clinical and MEG data of 23 patients with TS and DRE from two medical/research centers were reviewed. Seven pediatric patients, who had seizures during MEG recording and underwent resection or disconnection surgery, were included into the study. Cortical sources of ictal and interictal epileptiform MEG discharges were compared with epileptogenic zone location in six patients with favorable surgery outcome. Results: In patients who improved substantially after surgery all resected and several other tubers demonstrated epileptiform activity on interictal MEG. Ictal MEG provided crucial information about lobar location of the seizure onset zone (SOZ) in two cases, and in the other four it confirmed the SOZ location derived from the interictal data. In one case, ictal MEG findings were unreliable. In one patient, who did not benefit from surgical treatment, the resected tubers did not overlap with interictal and ictal MEG sources. Conclusion: The combination of interictal and ictal MEG is a valuable tool for identification of the epileptogenic tuber/tubers in presurgical work-up in patients with TS.Peer reviewe

    Quantum oscillations from Fermi arcs

    Full text link
    When a metal is subjected to strong magnetic field B nearly all measurable quantities exhibit oscillations periodic in 1/B. Such quantum oscillations represent a canonical probe of the defining aspect of a metal, its Fermi surface (FS). In this study we establish a new mechanism for quantum oscillations which requires only finite segments of a FS to exist. Oscillations periodic in 1/B occur if the FS segments are terminated by a pairing gap. Our results reconcile the recent breakthrough experiments showing quantum oscillations in a cuprate superconductor YBCO, with a well-established result of many angle resolved photoemission (ARPES) studies which consistently indicate "Fermi arcs" -- truncated segments of a Fermi surface -- in the normal state of the cuprates.Comment: 8 pages, 5 figure

    The S-matrix of the Faddeev-Reshetikhin Model, Diagonalizability and PT Symmetry

    Full text link
    We study the question of diagonalizability of the Hamiltonian for the Faddeev-Reshetikhin (FR) model in the two particle sector. Although the two particle S-matrix element for the FR model, which may be relevant for the quantization of strings on AdS5Γ—S5AdS_{5}\times S^{5}, has been calculated recently using field theoretic methods, we find that the Hamiltonian for the system in this sector is not diagonalizable. We trace the difficulty to the fact that the interaction term in the Hamiltonian violating Lorentz invariance leads to discontinuity conditions (matching conditions) that cannot be satisfied. We determine the most general quartic interaction Hamiltonian that can be diagonalized. This includes the bosonic Thirring model as well as the bosonic chiral Gross-Neveu model which we find share the same S-matrix. We explain this by showing, through a Fierz transformation, that these two models are in fact equivalent. In addition, we find a general quartic interaction Hamiltonian, violating Lorentz invariance, that can be diagonalized with the same two particle S-matrix element as calculated by Klose and Zarembo for the FR model. This family of generalized interaction Hamiltonians is not Hermitian, but is PTPT symmetric. We show that the wave functions for this system are also PTPT symmetric. Thus, the theory is in a PTPT unbroken phase which guarantees the reality of the energy spectrum as well as the unitarity of the S-matrix.Comment: 32 pages, 1 figure; references added, version published in JHE

    Quasiparticle Hall Transport of d-wave Superconductors in Vortex State

    Full text link
    We present a theory of quasiparticle Hall transport in strongly type-II superconductors within their vortex state. We establish the existence of integer quantum spin Hall effect in clean unconventional dx2βˆ’y2d_{x^2-y^2} superconductors in the vortex state from a general analysis of the Bogoliubov-de Gennes equation. The spin Hall conductivity Οƒxys\sigma^s_{xy} is shown to be quantized in units of ℏ8Ο€\frac{\hbar}{8\pi}. This result does not rest on linearization of the BdG equations around Dirac nodes and therefore includes inter-nodal physics in its entirety. In addition, this result holds for a generic inversion-symmetric lattice of vortices as long as the magnetic field BB satisfies Hc1β‰ͺBβ‰ͺHc2H_{c1} \ll B \ll H_{c2}. We then derive the Wiedemann-Franz law for the spin and thermal Hall conductivity in the vortex state. In the limit of Tβ†’0T \to 0, the thermal Hall conductivity satisfies ΞΊxy=4Ο€23(kBℏ)2TΟƒxys\kappa_{x y}=\frac{4\pi^2}{3}(\frac{k_B}{\hbar})^2 T \sigma^s_{xy}. The transitions between different quantized values of Οƒxys\sigma^s_{xy} as well as relation to conventional superconductors are discussed.Comment: 18 pages REVTex, 3 figures, references adde

    Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· возбудимости ΠΊΠΎΡ€Π΅ΡˆΠΊΠΎΠ²ΠΎΠΉ ΠΈ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΉ аксональной систСм Ρƒ Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… Π΄ΠΎΠ±Ρ€ΠΎΠ²ΠΎΠ»ΡŒΡ†Π΅Π² ΠΏΡ€ΠΈ пСрифСричСской ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ стимуляции

    Get PDF
    Background. Peripheral magnetic stimulation (PMS) is applied over spinal roots, peripheral nerves, terminal motor nerve branches. PMS has been used as a method of diagnosis and treatment for two decades. Despite the considerable amount of PMS studies, there is no consensus on the approach to determine the intensity of the magnetic stimulus in the treatment stimulation, the need for the differentiated activation of the different parts of the peripheral nervous system. This was the prerequisite for carrying out this study. Β Objective: to investigate the PMS intensity required to activate spinal roots and terminal nerve branches, the second object was the comparison of the threshold values among volunteers. Materials and methods. Thirty four healthy subjects with no neuromuscular diseases were enrolled in the study (mean age 31.0 Β± 8.6 years). PNS was applied by Magstim 200 magnetic stimulator (Great Britain). During the research the subjective threshold, the threshold of muscle contraction, the threshold of the root activation (according to motor evoked potential) were estimated. Stimulation-induced muscle activity was recorded via surface EMG system (Neurosoft, Russia) synchronized with the magnetic stimulator. Results. The analysis of data identified the significant differences (p <0.05) between the root activation and terminal nerve branches threshold values. There were no reports of gender differences between the threshold values of all investigated parameters within the group (p >0.05). There were no significant differences between right and left limbs (p >0.05) in the comparison of all parameters. Conclusion. The results of the present study can indicate the possibility of the individual approach of the determination the intensity of the magnetic stimulus for each patient. The findings of our study provide an opportunity for a better understanding of the action mechanism of PMS and can be used in order to develop the treatment algorithm for the use in the clinical settings.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. ΠŸΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΡ‡Π΅ΡΠΊΠ°Ρ магнитная стимуляция (ПМБ) ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ воздСйствиС ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π½Π° структуры пСрифСричСской Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы: ΠΊΠΎΡ€Π΅ΡˆΠΊΠΈ, спинномозговыС ΠΈ пСрифСричСскиС Π½Π΅Ρ€Π²Ρ‹. Π’ послСдниС Π³ΠΎΠ΄Ρ‹ ПМБ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π² качСствС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° диагностики ΠΈ лСчСния. НСсмотря Π½Π° большоС количСство исслСдований ПМБ, Π½Π΅ сущСствуСт Π΅Π΄ΠΈΠ½ΠΎΠ³ΠΎ мнСния ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π΅ ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ интСнсивности ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ стимула ΠΏΡ€ΠΈ Π»Π΅Ρ‡Π΅Π±Π½ΠΎΠΉ стимуляции, нСобходимости Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ стимуляции Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ‚Π΄Π΅Π»ΠΎΠ² пСрифСричСской Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы, Ρ‡Ρ‚ΠΎ явилось прСдпосылкой для провСдСния Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹. ЦСль исслСдования – ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ² возбуТдСния Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΡ€Π΅ΡˆΠΊΠΎΠ²ΠΎΠΉ систСмы ΠΈ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅Ρ‚Π²Π΅ΠΉ аксона ΠΏΡ€ΠΈ ПМБ. Π‘Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ сравнСниС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ срСди Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… Π΄ΠΎΠ±Ρ€ΠΎΠ²ΠΎΠ»ΡŒΡ†Π΅Π². ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ исслСдовании приняли участиС 34 Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… Π΄ΠΎΠ±Ρ€ΠΎΠ²ΠΎΠ»ΡŒΡ†Π° (срСдний возраст 31,0 Β± 8,6 Π³ΠΎΠ΄Π°). ПМБ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΌ стимуляторС Ρ„ΠΈΡ€ΠΌΡ‹ Magstim 200 (ВСликобритания). Π’ Ρ…ΠΎΠ΄Π΅ исслСдования ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΡΡƒΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΏΠΎΡ€ΠΎΠ³, ΠΏΠΎΡ€ΠΎΠ³ сокращСния ΠΌΡ‹ΡˆΡ†Ρ‹ ΠΈ ΠΏΠΎΡ€ΠΎΠ³ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΊΠΎΡ€Π΅ΡˆΠΊΠ° (ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ Π²Ρ‹Π·Π²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π°). Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ€Π΅Π³ΠΈΡΡ‚Ρ€Π°Ρ†ΠΈΡŽ Π²Ρ‹Π·Π²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π° осущСствляли Π½Π° ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΌ элСктромиографС (НСйрософт, Россия), синхронизированном с ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌ стимулятором. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π‘Ρ‹Π»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ статистичСски достовСрныС различия (Ρ€ <0,05) ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²Ρ‹ΠΌΠΈ значСниями Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΊΠΎ-Ρ€Π΅ΡˆΠΊΠΎΠ²ΠΎΠΉ систСмы ΠΈ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π²Π½ΡƒΡ‚Ρ€ΠΈΠΌΡ‹ΡˆΠ΅Ρ‡Π½Ρ‹Ρ… Π²Π΅Ρ‚Π²Π΅ΠΉ. ΠœΠ΅ΠΆΠ΄Ρƒ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²Ρ‹ΠΌΠΈ значСниями всСх исслСдуСмых ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π²Π½ΡƒΡ‚Ρ€ΠΈ Π³Ρ€ΡƒΠΏΠΏΡ‹ достовСрных Π³Π΅Π½Π΄Π΅Ρ€Π½Ρ‹Ρ… Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ Π½Π΅ зарСгистрировано (Ρ€ >0,05). Π’Π°ΠΊΠΆΠ΅ Π½Π΅ выявлСно достовСрных Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ ΠΏΡ€ΠΈ сравнСнии всСх ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΡ€Π°Π²ΠΎΠΉ ΠΈ Π»Π΅Π²ΠΎΠΉ конСчностями (p >0,05). Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° ПМБ слСдуСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ интСнсивности ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ стимула для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°. Π”Π°Π½Π½Ρ‹Π΅ нашСго исслСдования Π΄Π°ΡŽΡ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ понимания ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° дСйствия ПМБ ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π»Π΅Ρ‡Π΅Π±Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ стимуляции Π² клиничСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅.Β 
    • …
    corecore