679 research outputs found
Characteristics of First-Order Vortex Lattice Melting: Jumps in Entropy and Magnetization
We derive expressions for the jumps in entropy and magnetization
characterizing the first-order melting transition of a flux line lattice. In
our analysis we account for the temperature dependence of the Landau parameters
and make use of the proper shape of the melting line as determined by the
relative importance of electromagnetic and Josephson interactions. The results
agree well with experiments on anisotropic YBaCuO and
layered BiSrCaCuO materials and reaffirm the validity of
the London model.Comment: 4 pages. We have restructured the paper to emphasize that in the
London scaling regime (appropriate for YBCO) our results are essentially
exact. We have also emphasized that a major controversy over the relevance of
the London model to describe VL melting has been settled by this wor
A new broken U(1)-symmetry in extreme type-II superconductors
A phase transition within the molten phase of the Abrikosov vortex system
without disorder in extreme type-II superconductors is found via large-scale
Monte-Carlo simulations. It involves breaking a U(1)-symmetry, and has a
zero-field counterpart, unlike vortex lattice melting. Its hallmark is the loss
of number-conservation of connected vortex paths threading the entire system
{\it in any direction}, driving the vortex line tension to zero. This tension
plays the role of a generalized ``stiffness'' of the vortex liquid, and serves
as a probe of the loss of order at the transition, where a weak specific heat
anomaly is found.Comment: 5 pages, 3 figure
A Review of Progress Towards Simulation of Arc Quenching in Lightning Protection Devices Based on Multi Chamber Systems
Two distinct modes of follow current suppression were observed in multi-chamber systems (MCS) under lightning overvoltage: Zero Quenching (ZQ) and Impulse Quenching (IQ). Sufficiently lower erosion of electrodes and evaporation of discharge chamber walls makes the IQ more preferable as a mechanism of arc quenching. Since experimental search for best MCS design is both difficult and expensive numerical modeling is considered as a prospective method for geometry optimization. Several steps were made towards development of efficient arc model. This article highlights most important results of arc quenching simulation and current status of arc model development
Genetic Variation at Nuclear Loci Fails to Distinguish Two Morphologically Distinct Species of Aquilegia
Aquilegia formosa and pubescens are two closely related species belonging to the columbine genus. Despite their morphological and ecological differences, previous studies have revealed a large degree of intercompatibility, as well as little sequence divergence between these two taxa [1], [2]. We compared the inter- and intraspecific patterns of variation for 9 nuclear loci, and found that the two species were practically indistinguishable at the level of DNA sequence polymorphism, indicating either very recent speciation or continued gene flow. As a comparison, we also analyzed variation at two loci across 30 other Aquilegia taxa; this revealed slightly more differentiation among taxa, which seemed best explained by geographic distance. By contrast, we found no evidence for isolation by distance on a more local geographic scale. We conclude that the extremely low levels of genetic differentiation between A. formosa and A.pubescens at neutral loci will facilitate future genome-wide scans for speciation genes
Flux melting in BSCCO: Incorporating both electromagnetic and Josephson couplings
Multilevel Monte Carlo simulations of a BSCCO system are carried out
including both Josephson as well as electromagnetic couplings for a range of
anisotropies. A first order melting transition of the flux lattice is seen on
increasing the temperature and/or the magnetic field. The phase diagram for
BSCCO is obtained for different values of the anisotropy parameter .
The best fit to the experimental results of D. Majer {\it et al.} [Phys. Rev.
Lett. {\bf 75}, 1166 (1995)] is obtained for provided one
assumes a temperature dependence of the
penetration depth with . Assuming a dependence
the best fit is obtained for . For finite anisotropy the data is shown to collapse on a straight line
when plotted in dimensionless units which shows that the melting transition can
be satisfied with a single Lindemann parameter whose value is about 0.3. A
different scaling applies to the case. The energy jump is
measured across the transition and for large values of it is found to
increase with increasing anisotropy and to decrease with increasing magnetic
field. For infinite anisotropy we see a 2D behavior of flux droplets with a
transition taking place at a temperature independent of the magnetic field. We
also show that for smaller values of anisotropy it is reasonable to replace the
electromagnetic coupling with an in-plane interaction represented by a Bessel
function of the second kind (), thus justifying our claim in a previous
paper.Comment: 12 figures, revtex
Universal properties for linelike melting of the vortex lattice
Using numerical results obtained within two models describing vortex matter
(interacting elastic lines (Bose model) and uniformly frustrated XY-model) we
establish universal properties of the melting transition within the linelike
regime. These properties, which are captured correctly by both models, include
the scaling of the melting temperature with anisotropy and magnetic field, the
effective line tension of vortices in the liquid regime, the latent heat, the
entropy jump per entanglement length, and relative jump of Josephson energy at
the transition as compared to the latent heat. The universal properties can
serve as experimental fingerprints of the linelike regime of melting.
Comparison of the models allows us to establish boundaries of the linelike
regime in temperature and magnetic field.Comment: Revtex, 12 pages, 2 EPS figure
Flux-line entanglement as the mechanism of melting transition in high-temperature superconductors in a magnetic field
The mechanism of the flux-line-lattice (FLL) melting in anisotropic high-T_c
superconductors in is clarified by Monte Carlo
simulations of the 3D frustrated XY model. The percentage of entangled flux
lines abruptly changes at the melting temperature T_m, while no sharp change
can be found in the number and size distribution of vortex loops around T_m.
Therefore, the origin of this melting transition is the entanglement of flux
lines. Scaling behaviors of physical quantities are consistent with the above
mechanism of the FLL melting. The Lindemann number is also evaluated without
any phenomenological arguments.Comment: 10 pages, 5 Postscript figures, RevTeX; changed content and figures,
Phys. Rev. B Rapid Commun. in pres
Nucleation of Stable Superconductivity in YBCO-Films
By means of the linear dynamic conductivity, inductively measured on
epitaxial films between 30mHz and 30 MHz, the transition line to
generic superconductivity is studied in fields between B=0 and 19T. It follows
closely the melting line described recently in terms of a blowout of
thermal vortex loops in clean materials. The critical exponents of the
correlation length and time near , however, seem to be dominated by
some intrinsic disorder. Columnar defects produced by heavy-ion irradiation up
to field-equivalent-doses of lead to a disappointing reduction
of while for the generic line of the pristine film
is recovered. These novel results are also discussed in terms of a loop-driven
destruction of generic superconductivity.Comment: 11 pages including 7 EPS figures, accepted for publication in the
Proceedings of the Spring Meeting of the German Physical Society, Muenster
1999,Festkoerperprobleme/Advances in Solid State Physics 199
Abrikosov vortex escape from a columnar defect as a topological electronic transition in vortex core
We study microscopic scenario of vortex escape from a columnar defect under
the influence of a transport current. For defect radii smaller than the
superconducting coherence length the depinning process is shown to be a
consequence of two subsequent topological electronic transitions in a trapped
vortex core. The first transition at a critical current is associated
with the opening of Fermi surface segments corresponding to the creation of a
vortex--antivortex pair bound to the defect. The second transition at a certain
current is caused by merging of different Fermi surface segments,
which accompanies the formation of a freely moving vortex.Comment: 5 pages, 4 figure
How Many Subpopulations is Too Many? Exponential Lower Bounds for Inferring Population Histories
Reconstruction of population histories is a central problem in population
genetics. Existing coalescent-based methods, like the seminal work of Li and
Durbin (Nature, 2011), attempt to solve this problem using sequence data but
have no rigorous guarantees. Determining the amount of data needed to correctly
reconstruct population histories is a major challenge. Using a variety of tools
from information theory, the theory of extremal polynomials, and approximation
theory, we prove new sharp information-theoretic lower bounds on the problem of
reconstructing population structure -- the history of multiple subpopulations
that merge, split and change sizes over time. Our lower bounds are exponential
in the number of subpopulations, even when reconstructing recent histories. We
demonstrate the sharpness of our lower bounds by providing algorithms for
distinguishing and learning population histories with matching dependence on
the number of subpopulations. Along the way and of independent interest, we
essentially determine the optimal number of samples needed to learn an
exponential mixture distribution information-theoretically, proving the upper
bound by analyzing natural (and efficient) algorithms for this problem.Comment: 38 pages, Appeared in RECOMB 201
- …