22 research outputs found

    Low energy (p,γp,\gamma) reactions in Ni and Cu nuclei using microscopic optical model

    Full text link
    Radiative capture reactions for low energy protons have been theoretically studied for Ni and Cu isotopes using the microscopic optical model. The optical potential has been obtained in the folding model using different microscopic interactions with the nuclear densities from Relativistic Mean Field calculations. The calculated total cross sections as well as the cross sections for individually low lying levels have been compared with measurements involving stable nuclear targets. Rates for the rapid proton capture process have been evaluated for astrophysically important reactions.Comment: To appear in Physical Review

    Studies of the Response of the Prototype CMS Hadron Calorimeter, Including Magnetic Field Effects, to Pion, Electron, and Muon Beams

    Get PDF
    We report on the response of a prototype CMS hadron calorimeter module to charged particle beams of pions, muons, and electrons with momenta up to 375 GeV/c. The data were taken at the H2 and H4 beamlines at CERN in 1995 and 1996. The prototype sampling calorimeter used copper absorber plates and scintillator tiles with wavelength shifting fibers for readout. The effects of a magnetic field of up to 3 Tesla on the response of the calorimeter to muons, electrons, and pions are presented, and the effects of an upstream lead tungstate crystal electromagnetic calorimeter on the linearity and energy resolution of the combined calorimetric system to hadrons are evaluated. The results are compared with Monte Carlo simulations and are used to optimize the choice of total absorber depth, sampling frequency, and longitudinal readout segmentation.Comment: 89 pages, 41 figures, to be published in NIM, corresponding author: P de Barbaro, [email protected]
    corecore