134 research outputs found
Light Meson Dynamics Workshop. Mini proceedings
The mini-proceedings of the Light Meson Dynamics Workshop held in Mainz from
February 10th to 12th, 2014, are presented. The web page of the conference,
which contains all talks, can be found at
https://indico.cern.ch/event/287442/overview .Comment: 46 pages, 17 contributions. Editors: W. Gradl, P. Masjuan, M.
Ostrick, and S. Schere
Recommended from our members
Oxidation in HVOF-sprayed steel
It is widely held that most of the oxidation in thermally sprayed coatings occurs on the surface of the droplet after it has flattened. The evidence in this paper suggests that, for the conditions studied here, oxidation of the top surface of flattened droplets is not the dominant oxidation mechanism. In this study, a mild steel wire (AISI 1025) was sprayed using a high-velocity oxy-fuel (HVOF) torch onto copper and aluminum substrates. Ion milling and Auger spectroscopy were used to examine the distribution of oxides within individual splats. Conventional metallographic analysis was also used to study oxide distributions within coatings that were sprayed under the same conditions. An analytical model for oxidation of the exposed surface of a splat is presented. Based on literature data, the model assumes that diffusion of iron through a solid FeO layer is the rate limiting factor in forming the oxide on the top surface of a splat. An FeO layer only a few thousandths of a micron thick is predicted to form on the splat surface as it cools. However, the experimental evidence shows that the oxide layers are typically 100x thicker than the predicted value. These thick, oxide layers are not always observed on the top surface of a splat. Indeed, in some instances the oxide layer is on the bottom, and the metal is on the top. The observed oxide distributions are more consistently explained if most of the oxide formed before the droplets impact the substrate
Recommended from our members
The ORNL beamline at the National Synchrotron Light Source
The Oak Ridge National Laboratory's (ORNL) beamline at the National Synchrotron Light Source (NSLS) incorporates several novel features including x-ray optics based on sagittal focusing with crystals and a cantilevered mirror whose center becomes the pivot for all downstream optical elements. Crystal focusing accepts a much larger horizontal divergence of radiation than a mirror while maintaining excellent momentum transfer and energy resolution. This sagittally bent crystal serves as the second element of a two-crystal, nondispersive monochromator. The cantilevered mirror provides a simple design for vertical focusing of the radiation. The beamline is suitable for both x-ray scattering and spectroscopy experiments requiring good energy resolution and high intensity in the energy range from 2.5 to 40 keV. This paper describes the optics of the ORNL beamline and reports their performance to date
Gyrokinetic GENE simulations of DIII-D near-edge L-mode plasmas
We present gyrokinetic simulations with the GENE code addressing the
near-edge region of an L-mode plasma in the DIII-D tokamak. At radial position
, simulations with the ion temperature gradient increased by
above the nominal value give electron and ion heat fluxes that are in
simultaneous agreement with the experiment. This gradient increase is
consistent with the combined statistical and systematic uncertainty of
the Charge Exchange Recombination Spectroscopy (CER) measurements at the level. Multi-scale simulations are carried out with realistic mass
ratio and geometry for the first time in the near-edge. These multi-scale
simulations suggest that the highly unstable ion temperature gradient (ITG)
modes of the flux-matched ion-scale simulations suppress electron-scale
transport, such that ion-scale simulations are sufficient at this location. At
radial position , nonlinear simulations show a hybrid state of ITG
and trapped electron modes~(TEMs), which was not expected from linear
simulations. The nonlinear simulations reproduce the total experimental heat
flux with the inclusion of shear effects and an
increase in the electron temperature gradient by . This gradient
increase is compatible with the combined statistical and systematic uncertainty
of the Thomson scattering data at the level. These results are
consistent with previous findings that gyrokinetic simulations are able to
reproduce the experimental heat fluxes by varying input parameters close to
their experimental uncertainties, pushing the validation frontier closer to the
edge region.Comment: 14 pages, 17 figures, published in Physics of Plasma
Recommended from our members
Computational fluid dynamics analysis of a wire-feed, high-velocity oxygen-fuel (HVOF) thermal spray torch
The fluid and particle dynamics of a High-Velocity Oxygen-Fuel Thermal Spray torch are analyzed using computational and experimental techniques. Three-dimensional Computational Fluid Dynamics (CFD) results are presented for a curved aircap used for coating interior surfaces such as engine cylinder bores. The device analyzed is similar to the Metco Diamond Jet Rotating Wire (DJRW) torch. The feed gases are injected through an axisymmetric nozzle into the curved aircap. Premixed propylene and oxygen are introduced from an annulus in the nozzle, while cooling air is injected between the nozzle and the interior wall of the aircap. The combustion process is modeled using a single-step finite-rate chemistry model with a total of 9 gas species which includes dissociation of combustion products. A continually-fed steel wire passes through the center of the nozzle and melting occurs at a conical tip near the exit of the aircap. Wire melting is simulated computationally by injecting liquid steel particles into the flow field near the tip of the wire. Experimental particle velocity measurements during wire feed were also taken using a Laser Two-Focus (L2F) velocimeter system. Flow fields inside and outside the aircap are presented and particle velocity predictions are compared with experimental measurements outside of the aircap
Recommended from our members
Particle Velocity and Deposition Efficiency in the Cold Spray Process
Copper powder was sprayed by the cold-gas dynamic method. In-flight particle velocities were measured with a laser-two-focus system as a function of process parameters such as gas temperature, gas pressure, and powder feed rate. Particle velocities were uniform in a relatively large volume within the plume and agreed with theoretical predictions. The presence of the substrate was found to have no significant effect on particle velocities. Cold-spray deposition efficiencies were measured on aluminum substrates as a function of particle velocity and incident angle of the plume. Deposition efficiencies of up to 95% were achieved. The critical velocity for deposition was determined to be about 640 meters per second. This work investigates both the in-flight characteristics of copper particles in a supersonic cold-spray plume and the build-up of the subsequent coating on aluminum substrates. Velocities were found to be relatively constant within a large volume of the plume. Particle counts dropped off sharply away from the central axis. The presence of a substrate was found to have no effect on the velocity of the particles. A substantial mass-loading effect on the particle velocity was observed; particle velocities begin to drop as the mass ratio of powder to gas flow rates exceeds 3%. The measured variation of velocity with gas pressure and pre-heat temperature was in fairly good agreement with theoretical predictions. Helium may be used as the driving gas instead of air in order to achieve higher particle velocities for a given temperature and pressure. Coating deposition efficiencies were found to increase with particle velocity and decrease with gun- substrate angle. There did not appear to be any dependence of the deposition efficiency on coating thickness. A critical velocity for deposition of about 640 mk appears to fit the data well. The cold-spray technique shows promise as a method for the deposition of materials which are thermally sensitive or may experience rapid oxidation under typical thermal spray conditions. High deposition efficiencies are achievable for certain coating-substrate conditions. Work remains to determine the material and microstructural properties which govern the coating process
- …